×

On the Mahler measure of the Coxeter polynomial of an algebra. (English) Zbl 1311.16010

Lehmer’s conjecture asserts that the smallest Mahler measure is the only real zero \(\mu_0\sim 1.176280\ldots\) of the polynomial \[ f(T)=T^{10}+T^9-T^7-T^6-T^5-T^4-T^3+T+1. \] This polynomial is also a Coxeter polynomial \(\chi_A\), i.e. the characteristic polynomial of the Coxeter transformation defined by a hereditary algebra \(A\).
Let \(M_{(\chi_A)}\) be the Mahler measure of the Coxeter polynomial \(\chi_A\) of a finite dimensional algebra \(A\) over an algebraically closed field \(k\). Suppose, \(A\) is a basic connected and triangular algebra with \(n\) pairwise non-isomorphic simple modules.
The purpose of this paper is to study the Mahler measure of Coxeter polynomials of accessible algebras. An algebra \(A\) is called accessible, if there is a sequence \(k=A_1,A_2,\ldots,A_n=A\) of algebras such that each \( A_{i+1}\) is a one-point extension of \(A_i\) by some exceptional \(A_i\)-module \(M_i\) for \(i=1,2,\ldots,n-1\).
It is proved that for any accessible algebra \(A\) the Mahler measure of Coxeter transformation is either \(M_{\chi_A}=1\) or \(M_{\chi_B}\geq\mu_0\) for some convex subcategory \(B\) of \(A\).
A sequence of algebras, called interlaced tower of algebras \(A_m,\ldots,A_n\) with \(m\leq n-2\) is introduced. It is supposed for the corresponding Coxeter polynomials and \(m+1\leq s\leq n-1\) that \[ \chi_{A_{s+1}}=(T+1)\chi_{A_s}-T\chi_{A_{s-1}}. \] It is proved that if the zeros of \(\chi_{A_n}\) are either on the unit circle or they are positive real numbers and \(M_{(\chi_{A_n})}>1\) then \(M_{(\chi_{A_m})}<M_{(\chi_{A_n})}\).
Several examples are also constructed.

MSC:

16G20 Representations of quivers and partially ordered sets
16G60 Representation type (finite, tame, wild, etc.) of associative algebras
11R09 Polynomials (irreducibility, etc.)
11C08 Polynomials in number theory
16G10 Representations of associative Artinian rings
18E30 Derived categories, triangulated categories (MSC2010)

References:

[1] A’Campo, N., Sur les valeurs propres de la transformation de Coxeter, Invent. Math., 33, 1, 61-67 (1976) · Zbl 0406.20041
[2] Assem, I.; Simson, D.; Skowroński, A., Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts, vol. 65 (2006), Cambridge University Press · Zbl 1092.16001
[3] Barot, M.; Lenzing, H., One-point extensions and derived equivalence, J. Algebra, 264, 1-5 (2003) · Zbl 1060.16011
[4] Bondal, A. I.; Kapranov, M. M., Representable functors, Serre functors, and mutations, Math. USSR Izv., 35, 519-541 (1990) · Zbl 0703.14011
[5] de la Peña, J. A., Coxeter transformations and the representation theory of algebras, (Dlab, V.; Scott, L. L., Finite Dimensional Algebras and Related Topics (1994), Kluwer Academic Publishers), 223-253 · Zbl 0811.16009
[6] de la Peña, J. A., Algebras whose Coxeter polynomials are product of cyclotomic polynomials, Algebr. Represent. Theory, 17, 905-930 (2014) · Zbl 1308.16016
[7] de la Peña, J. A.; Takane, M., Spectral properties of Coxeter transformations and applications, Arch. Math., 55, 120-134 (1990) · Zbl 0687.16017
[8] Dlab, V.; Ringel, C. M., Eigenvalues of Coxeter transformations and the Gelfand-Kirillov dimension of the preprojective algebras, Proc. Amer. Math. Soc., 83, 228-232 (1981) · Zbl 0471.15005
[9] Geigle, W.; Lenzing, H., A class of weighted projective curves arising in representation theory of finite dimensional algebras, (Singularities, Representations of Algebras, and Vector Bundles. Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math., vol. 1273 (1987), Springer), 265-297 · Zbl 0651.14006
[10] Geigle, W.; Lenzing, H., Perpendicular categories with applications to representations and sheaves, J. Algebra, 144, 273-343 (1991) · Zbl 0748.18007
[11] Happel, D., Hochschild cohomology of finite dimensional algebras, (Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année. Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année, Lecture Notes in Math., vol. 1404 (1989), Springer-Verlag), 108-126 · Zbl 0688.16033
[12] Happel, D., The trace of the Coxeter matrix and the Hochschild cohomology, Linear Algebra Appl., 258, 169-177 (1997) · Zbl 0894.16006
[13] Happel, D., A characterization of hereditary categories with tilting object, Invent. Math., 144, 381-398 (2001) · Zbl 1015.18006
[14] Happel, D., The Coxeter polynomial for a one-point extension algebra, J. Algebra, 321, 2028-2041 (2009) · Zbl 1201.16015
[15] Keller, B., Deriving DG categories, Ann. Sci. Éc. Norm. Supér. (4), 27, 1, 63-102 (1994) · Zbl 0799.18007
[16] Kronecker, L., Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Crelle, 105-108 (1857), (Ouvres I) · ERAM 053.1389cj
[17] Kussin, D.; Lenzing, H.; Meltzer, H., Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math., 237 (2013) · Zbl 1273.14075
[18] Ladkani, S., On derived equivalences of lines, rectangles and triangles, J. Lond. Math. Soc., 87, 157-176 (2013) · Zbl 1284.16008
[19] Lehmer, D. H., Factorization of certain cyclotomic functions, Ann. of Math., 34, 461-479 (1933) · Zbl 0007.19904
[20] Lenzing, H., Coxeter transformations associated with finite-dimensional algebras, (Computational Methods for Representations of Groups and Algebras. Computational Methods for Representations of Groups and Algebras, Progr. Math., vol. 173 (1999), Birkhäuser: Birkhäuser Basel), 287-308 · Zbl 0941.16007
[21] Lenzing, H.; de la Peña, J. A., Wild canonical algebras, Math. Z., 224, 403-425 (1997) · Zbl 0882.16011
[22] Lenzing, H.; de la Peña, J. A., Supercanonical algebras, J. Algebra, 282, 298-348 (2004) · Zbl 1092.16007
[23] Lenzing, H.; de la Peña, J. A., Spectral analysis of finite dimensional algebras and singularities, (Skowroński, A., Trends in Representation Theory of Algebras and Related Topics (2008), EMS Publishing House: EMS Publishing House Zürich), 541-588 · Zbl 1210.16013
[24] Lenzing, H.; de la Peña, J. A., A Chebysheff recursion formula for Coxeter polynomials, Linear Algebra Appl., 430, 947-956 (2009) · Zbl 1216.11100
[25] Lenzing, H.; de la Peña, J. A., Extended canonical algebras and Fuchsian singularities, Math. Z., 268, 1-2, 143-167 (2011) · Zbl 1268.16020
[27] Mahler, K., Lectures on Transcendental Number Theory, Lecture Notes in Math., vol. 546 (1976), Springer-Verlag: Springer-Verlag Berlin · Zbl 0332.10019
[28] McKee, J.; Smyth, C., Integer symmetric matrices of small spectral radius and small Mahler measure, Int. Math. Res. Not. IMRN, 102-136 (2012) · Zbl 1243.15020
[29] Mossinghoff, M. J., Polynomials with small Mahler measure, Math. Comp., 67, 224, 1697-1705 (1998) · Zbl 0918.11056
[30] Mossinghoff, M. J., Michael Mossinghoff’s home page
[31] Mossinghoff, M.; Rhin, G.; Wu, Q., Minimal Mahler measures, Experiment. Math., 17, 4, 451-458 (2008) · Zbl 1194.11100
[32] Obreschkoff, N., Verteilung und Berechnung der Nullstellen reeller Polynome (1963), VEB Deutscher Verlag der Wissenchaften: VEB Deutscher Verlag der Wissenchaften Berlin · Zbl 0156.28202
[33] Prasolov, V., Polynomials, Algorithms Comput. Math., vol. 11 (2001), Springer-Verlag: Springer-Verlag Berlin · Zbl 1272.12001
[34] Ringel, C. M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099 (1984), Springer-Verlag: Springer-Verlag Berlin · Zbl 0546.16013
[35] Ringel, C. M., The spectral radius of the Coxeter transformations for a generalized Cartan matrix, Math. Ann., 300, 331-339 (1994) · Zbl 0819.15008
[36] Smyth, C., The Mahler measure of algebraic numbers: a survey, (McKee, J.; Smyth, C., Number Theory and Polynomials. Number Theory and Polynomials, London Math. Soc. Lecture Note Ser., vol. 352 (2008), Cambridge University Press), 322-349 · Zbl 1334.11081
[37] Xi, C., On wild hereditary algebras with small growth numbers, Comm. Algebra, 18, 10, 3413-3420 (1990) · Zbl 0706.16003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.