×

Higher Gauss sums of modular categories. (English) Zbl 1430.18015

Quadratic Gauss sums are the sums of values of quadratic forms on finite abelian groups. As any such quadratic form determines a (pre)modular pointed braided tensor category (with tensor products given by the group multiplication), it is natural to generalize Gauss sums to any premodular tensor category. This paper introduces higher Gauss sums for any \(n\in\mathbb{Z}\) and premodular category \(\mathcal{C}\): \[ \tau_n(\mathcal{C})=\sum_{X\in\mathcal{O}(\mathcal{C})} \theta_X^n \dim_\mathcal{C}(X)^2, \] where \(\mathcal{O}(\mathcal{C})\) is a set of representatives of the isomorphism classes of simple objects in \(\mathcal{C}\), \(\theta_X\) is the twist on the simple object \(X\), and \(\dim_\mathcal{C}(X)\) is the categorical dimension. The cases \(n=\pm 1\) are the Gauss sums of \(\mathcal{C}\), and \(n=0\) yields the global dimension of \(\mathcal{C}\). Then the \(n\)th (multiplicative) central charge of \(\mathcal{C}\) is defined to be \(\xi_n(\mathcal{C})=\tau_n(\mathcal{C})/\vert\tau_n(\mathcal{C})\vert\), if \(\tau_n(\mathcal{C})\neq 0\).
It is known that the Gauss sums of a modular tensor category are non-zero, but this is not always true for the higher Gauss sums. However, if \(\mathcal{C}\) is modular and \(n\) is relatively prime to the order of the \(T\)-matrix of \(\mathcal{C}\), the authors calculate \(\tau_n(\mathcal{C})\) in terms of the action of \(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\) on the non-zero \(\tau_1(\mathcal{C})\) and thus show \(\tau_n(\mathcal{C})\neq 0\), so that \(\xi_n(\mathcal{C})\) is defined. They calculate the higher Gauss sums and central charges more explicitly for \(\mathcal{C}\) the Drinfeld double of a spherical fusion category \(\mathcal{D}\); for example, they show \(\xi_n(\mathcal{Z}(\mathcal{D}))=1\) for all \(n\) relatively prime to the order of the \(T\)-matrix of \(\mathcal{Z}(\mathcal{D})\).
A standard construction of a new (pre)modular category from an old one is the category \(\mathcal{C}^0_A\) of local modules for a ribbon (or rigid) algebra \(A\) in a premodular category \(\mathcal{C}\) [A. Kirillov jun. and V. Ostrik, Adv. Math. 171, No. 2, 183–227 (2002; Zbl 1024.17013)]. Here the authors compute higher Gauss sums and central charges of \(\mathcal{C}^0_A\) in terms of those for \(\mathcal{C}\). For \(\mathcal{C}\) modular and \(n\) relatively prime to the order of the \(T\)-matrix of \(\mathcal{C}\), \[ \tau_n(\mathcal{C}^0_A)=\frac{\sigma(\dim_\mathcal{C}(A))}{\dim_\mathcal{C}(A)^2}\tau_n(\mathcal{C}) \] for suitable \(\sigma\in\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\), and \(\xi_n(\mathcal{C}^0_A)=\xi_n(\mathcal{C})\). For \(\mathcal{C}\) premodular, they show the same relations hold at least when \(n=1\) or \(A\) is a simple current extension of the unit object in \(\mathcal{C}\), that is, \(A\) is the sum of invertible simple objects of \(\mathcal{C}\).
The main application of Gauss sums and central charges in this paper is to the Witt group of non-degenerate braided fusion categories of [A. Davydov et al., J. Reine Angew. Math. 677, 135–177 (2013; Zbl 1271.18008)]. The authors show that Witt-equivalent pseudo-unitary modular tensor categories have equal higher central charges, thus giving a sufficient condition for Witt non-equivalence. In an example, they show how higher central charges can be used to find generators of subgroups of the Witt group.

MSC:

18M15 Braided monoidal categories and ribbon categories
57R56 Topological quantum field theories (aspects of differential topology)
11L05 Gauss and Kloosterman sums; generalizations

References:

[1] Anderson, G., Moore, G.: Rationality in conformal field theory. Commun. Math. Phys. 117(3), 441-450 (1988) · Zbl 0647.17012 · doi:10.1007/BF01223375
[2] Bakalov, B., Kirillov Jr., A.: Lectures on Tensor Categories and Modular Functors. Volume 21 of University Lecture Series. American Mathematical Society, Providence, RI (2001) · Zbl 0965.18002
[3] Bantay, P.: The Frobenius-Schur indicator in conformal field theory. Phys. Lett. B 394(1-2), 87-88 (1997) · Zbl 0925.81331 · doi:10.1016/S0370-2693(96)01662-0
[4] Bruillard, P., Ng, S.-H., Rowell, E.C., Wang, Z.: Rank-finiteness for modular categories. J. Am. Math. Soc. 29(3), 857-881 (2016) · Zbl 1344.18008 · doi:10.1090/jams/842
[5] Calegari, F., Morrison, S., Snyder, N.: Cyclotomic integers, fusion categories, and subfactors. Commun. Math. Phys. 303(3), 845-896 (2011) · Zbl 1220.18004 · doi:10.1007/s00220-010-1136-2
[6] Coste, A., Gannon, T.: Remarks on Galois symmetry in rational conformal field theories. Phys. Lett. B 323(3-4), 316-321 (1994) · doi:10.1016/0370-2693(94)91226-2
[7] Davydov, A., Müger, M., Nikshych, D., Ostrik, V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135-177 (2013) · Zbl 1271.18008
[8] Davydov, A., Nikshych, D., Ostrik, V.: On the structure of the Witt group of braided fusion categories. Sel. Math. 19(1), 237-269 (2013) · Zbl 1345.18005 · doi:10.1007/s00029-012-0093-3
[9] de Boer, J., Goeree, J.: Markov traces and \[{\rm II}_1\] II1 factors in conformal field theory. Commun. Math. Phys. 139(2), 267-304 (1991) · Zbl 0760.57002 · doi:10.1007/BF02352496
[10] Dong, C., Lin, X., Ng, S.-H.: Congruence property in conformal field theory. Algebra Number Theory 9(9), 2121-2166 (2015) · Zbl 1377.17025 · doi:10.2140/ant.2015.9.2121
[11] Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories. I. Sel. Math. (N.S.) 16(1), 1-119 (2010) · Zbl 1201.18005 · doi:10.1007/s00029-010-0017-z
[12] Eilenberg, S., MacLane, S.: Cohomology theory of Abelian groups and homotopy theory. I. Proc. Natl. Acad. Sci. USA 36, 443-447 (1950) · Zbl 0039.19002 · doi:10.1073/pnas.36.8.443
[13] Eilenberg, S., MacLane, S.: Cohomology theory of Abelian groups and homotopy theory. II. Proc. Natl. Acad. Sci. USA 36, 657-663 (1950) · Zbl 0039.19002 · doi:10.1073/pnas.36.11.657
[14] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2015) · Zbl 1365.18001 · doi:10.1090/surv/205
[15] Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. (2) 162(2), 581-642 (2005) · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[16] Etingof, P., Ostrik, V.: On semisimplification of tensor categories. arXiv:1801.04409 · Zbl 1077.18005
[17] Evans, D.E., Gannon, T.: The exoticness and realisability of twisted Haagerup-Izumi modular data. Commun. Math. Phys. 307(2), 463-512 (2011) · Zbl 1236.46055 · doi:10.1007/s00220-011-1329-3
[18] Gauss, C.F.: Summatio serierum quarundam singularium. Comment. Soc. Regiae Sci. Gott. 1 (1811)
[19] Gauss, C.F.: Disquisitiones arithmeticae (Trans. into English by Arthur A. Clarke, S. J.). Yale University Press, New Haven, Conn.-London (1966) · Zbl 0136.32301
[20] Greiter, G.: A simple proof for a theorem of Kronecker. Am. Math. Mon. 85(9), 756-757 (1978) · doi:10.1080/00029890.1978.11994694
[21] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Volume 84 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1990) · Zbl 0712.11001 · doi:10.1007/978-1-4757-2103-4
[22] Kashina, Y., Montgomery, S., Ng, S.-H.: On the trace of the antipode and higher indicators. Isr. J. Math. 188, 57-89 (2012) · Zbl 1260.16027 · doi:10.1007/s11856-011-0092-7
[23] Kashina, Y., Sommerhäuser, Y., Zhu, Y.: On higher Frobenius-Schur indicators. Mem. Am. Math. Soc. 181(855), viii+65 (2006) · Zbl 1163.16029
[24] Kač, V.G., Peterson, D.H.: Infinite-dimensional lie algebras, theta functions and modular forms. Adv. Math. 53(2), 125-264 (1984) · Zbl 0584.17007 · doi:10.1016/0001-8708(84)90032-X
[25] Kirby, R., Melvin, P.: The \[33\]-manifold invariants of Witten and Reshetikhin-Turaev for \[{\rm sl}(2,{ C})\] sl(2,C). Invent. Math. 105(3), 473-545 (1991) · Zbl 0745.57006 · doi:10.1007/BF01232277
[26] Kirillov, A., Ostrik, V.: On a \[q\] q-analogue of the McKay correspondence and the ADE classification of \[\mathfrak{sl}_2\] sl2 conformal field theories. Adv. Math. 171(2), 183-227 (2002) · Zbl 1024.17013 · doi:10.1006/aima.2002.2072
[27] Lang, S.: Algebra. Volume 211 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2002) · Zbl 0984.00001 · doi:10.1007/978-1-4613-0041-0
[28] Lejeune Dirichlet, G.: Recherches sur diverses applications de l’Analyse infinitésimale à la Théorie des Nombres. Seconde Partie. J. Reine Angew. Math. 21, 134-155 (1840) · ERAM 021.0663cj
[29] Lickorish, W.B.R.: Invariants for \[33\]-manifolds from the combinatorics of the Jones polynomial. Pac. J. Math. 149(2), 337-347 (1991) · Zbl 0728.57011 · doi:10.2140/pjm.1991.149.337
[30] Linchenko, V., Montgomery, S.: A Frobenius-Schur theorem for Hopf algebras. Algebr. Represent. Theory 3(4), 347-355 (2000). (Special issue dedicated to Klaus Roggenkamp on the occasion of his 60th birthday) · Zbl 0971.16018 · doi:10.1023/A:1009949909889
[31] Lusztig, G.: Introduction to Quantum Groups, Modern Birkhäuser Classics. Birkhäuser, Boston (2010) · Zbl 1246.17018 · doi:10.1007/978-0-8176-4717-9
[32] Müger, M.: From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 180(1-2), 159-219 (2003) · Zbl 1033.18003 · doi:10.1016/S0022-4049(02)00248-7
[33] Murakami, H., Ohtsuki, T., Okada, M.: Invariants of three-manifolds derived from linking matrices of framed links. Osaka J. Math. 29(3), 545-572 (1992) · Zbl 0776.57009
[34] Ng, S.-H., Schauenburg, P.: Frobenius-Schur indicators and exponents of spherical categories. Adv. Math. 211(1), 34-71 (2007) · Zbl 1138.16017 · doi:10.1016/j.aim.2006.07.017
[35] Ng, S.-H., Schauenburg, P.: Higher Frobenius-Schur indicators for pivotal categories. In: Hopf algebras and generalizations. Contemporary Mathematics, vol. 441, pp. 63-90. American Mathematical Society, Providence, RI (2007) · Zbl 1153.18008
[36] Ng, S.-H., Schauenburg, P.: Central invariants and higher indicators for semisimple quasi-Hopf algebras. Trans. Am. Math. Soc. 360(4), 1839-1860 (2008) · Zbl 1141.16028 · doi:10.1090/S0002-9947-07-04276-6
[37] Ng, S.-H., Schauenburg, P.: Congruence subgroups and generalized Frobenius-Schur indicators. Commun. Math. Phys. 300(1), 1-46 (2010) · Zbl 1206.18007 · doi:10.1007/s00220-010-1096-6
[38] Ostrik, V.: On formal codegrees of fusion categories. Math. Res. Lett. 16(5), 895-901 (2009) · Zbl 1204.18003 · doi:10.4310/MRL.2009.v16.n5.a11
[39] Ostrik, V.: Pivotal fusion categories of rank 3. Mosc. Math. J. 15(2), 373-396 (2015) · Zbl 1354.18009 · doi:10.17323/1609-4514-2015-15-2-373-396
[40] Pareigis, B.: On braiding and dyslexia. J. Algebra 171, 413-425 (1995) · Zbl 0816.18003 · doi:10.1006/jabr.1995.1019
[41] Penneys, D., Tener, J.E.: Subfactors of index less than 5, part 4: vines. Int. J. Math. 23(3), 18 (2012) · Zbl 1246.46056 · doi:10.1142/S0129167X11007641
[42] Reshetikhin, N., Turaev, V.G.: Invariants of \[33\]-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547-597 (1991) · Zbl 0725.57007 · doi:10.1007/BF01239527
[43] Rowell, E.C.: From quantum groups to unitary modular tensor categories. Contemp. Math. 413, 215-230 (2006) · Zbl 1156.18302 · doi:10.1090/conm/413/07848
[44] Rowell, E.C., Wang, Z.: Mathematics of topological quantum computing. Bull. Am. Math. Soc. (N.S.) 55(2), 183-238 (2018) · Zbl 1437.81005 · doi:10.1090/bull/1605
[45] Scharlau, W.: Quadratic and Hermitian Forms, Volume 270 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1985) · Zbl 0584.10010
[46] Schopieray, A.: Classification of \[\mathfrak{sl}_3\] sl3 relations in the Witt group of nondegenerate braided fusion categories. Commun. Math. Phys. 353(3), 1103-1127 (2017) · Zbl 1374.18014 · doi:10.1007/s00220-017-2831-z
[47] Schopieray, A.: Level bounds for exceptional quantum subgroups in rank two. Int. J. Math. 29(5), 1850034 (2018) · Zbl 1390.81255 · doi:10.1142/S0129167X18500349
[48] Schopieray, A: Prime decomposition of modular tensor categories of local modules of Type D. arXiv:1810.09057 · Zbl 1374.18014
[49] Shimizu, K.: Frobenius-Schur indicators in Tambara-Yamagami categories. J. Algebra 332, 543-564 (2011) · Zbl 1236.18012 · doi:10.1016/j.jalgebra.2011.02.002
[50] Shimizu, K.: Some computations of Frobenius-Schur indicators of the regular representations of Hopf algebras. Algebr. Represent. Theory 15(2), 325-357 (2012) · Zbl 1260.16028 · doi:10.1007/s10468-010-9243-5
[51] Tambara, D., Yamagami, S.: Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 209(2), 692-707 (1998) · Zbl 0923.46052 · doi:10.1006/jabr.1998.7558
[52] Tucker, H.: Frobenius-Schur indicators for near-group and Haagerup-Izumi fusion categories. Pac. J. Math. arXiv:1510.05696 · Zbl 1442.18041
[53] Turaev, V.: Reciprocity for Gauss sums on finite abelian groups. Math. Proc. Cambr. Philos. Soc. 124(2), 205-214 (1998) · Zbl 1048.11501 · doi:10.1017/S0305004198002655
[54] Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. Volume 18 of De Gruyter Studies in Mathematics, revised edn. Walter de Gruyter & Co., Berlin (2010) · Zbl 1213.57002 · doi:10.1515/9783110221848
[55] Vafa, C.: Toward classification of conformal theories. Phys. Lett. B 206(3), 421-426 (1988) · doi:10.1016/0370-2693(88)91603-6
[56] Vaughan, S.M., Jones, F.R., Snyder, N.: The classification of subfactors of index at most 5. Bull. Am. Math. Soc. 51(2), 277-327 (2014) · Zbl 1301.46039
[57] Wan, Z., Wang, Y.: Classification of spherical fusion categories of Frobenius-Schur exponent 2. Algebra Colloq. arXiv:1811.02004 · Zbl 1452.18022
[58] Wang, Z.: Topological Quantum Computation, Volume 112 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence, RI (2010)
[59] Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351-399 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.