×

Classification of \(\mathfrak{sl}_3\) relations in the Witt group of nondegenerate braided fusion categories. (English) Zbl 1374.18014

The Witt group in the title of this paper is generated by equivalence classes of nondegenerate braided fusion categories, with a relation \([\mathcal{C}]=[\mathcal{D}]\) if \(\mathcal{C}\) and \(\mathcal{D}\) become equivalent after taking Deligne products with Drinfeld centers, that is, \(\mathcal{C}\boxtimes Z(\mathcal{A}_1)\cong \mathcal{D}\boxtimes Z(\mathcal{A}_2)\), where \(Z(\mathcal{A}_i)\) are Drinfeld centers of fusion categories \(\mathcal{A}_i\). The product in the Witt group is given by the Deligne product of fusion categories, and inverses are obtained by reversing the braiding of a braided fusion category.
Important examples \(\mathcal{C}(\mathfrak{g}, k)\) of (modular) braided fusion categories arise from representations of affine Lie algebras \(\widehat{\mathfrak{g}}\) at non-negative integer levels \(k\) ([M. Finkelberg, Geom. Funct. Anal. 6, No. 2, 249–267 (1996; Zbl 0860.17040); erratum ibid. 23, No. 2, 810–811 (2013)], [Y.-Z. Huang and J. Lepowsky, Duke Math. J. 99, No. 1, 113–134 (1999; Zbl 0953.17016)]), or equivalently, from representations of quantum groups \(U_q(\mathfrak{g})\) at suitable roots of unity \(q\) ([H. H. Andersen and J. Paradowski, Commun. Math. Phys. 169, No. 3, 563–588 (1995; Zbl 0827.17010)]).
In the paper under review, the author finds all Witt group relations between the equivalence classes \([\mathcal{C}(\mathfrak{sl}_3, k)]\), as well as all relations involving only the classes \([\mathcal{C}(\mathfrak{sl}_3, k)]\) and \([\mathcal{C}(\mathfrak{sl}_2, k)]\) (relations involving only the classes \([\mathcal{C}(\mathfrak{sl}_2, k)]\) were classified in [A. Davydov et al., Sel. Math., New Ser. 19, No. 1, 237–269 (2013; Zbl 1345.18005)]). The classification of Witt group relations is based on finding a category in each equivalence class \([\mathcal{C}(\mathfrak{sl}_3, k)]\) that has no non-trivial fusion subcategories or non-trivial connected étale algebras. For most cases where \(3\,|\,k\), the author shows that the braided tensor category of dyslectic modules for a certain maximal connected étale algebra in \(\mathcal{C}(\mathfrak{sl}_3, k)\) can be used; for the remaining cases, he uses a result of T. Gannon [Commun. Math. Phys. 161, No. 2, 233–263 (1994; Zbl 0806.17031)] that additional non-trivial connected étale algebras occur in the categories \(\mathcal{C}(\mathfrak{sl}_3,k)\) only for the levels \(k=5, 9, 21\).
The paper concludes with an overview of the obstructions to completing a similar classification of Witt group relations between classes \([\mathcal{C}(\mathfrak{g},k)]\) for higher-rank \(\mathfrak{g}\).

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Bais F.A, Bouwknegt P.G.: A classification of subgroup truncations of the bosonic string. Nucl. Phys. B 279(3), 561-570 (1987) · doi:10.1016/0550-3213(87)90010-1
[2] Bakalov, B., Kirillov, A., Jr.: Lectures on Tensor Categories and Modular Functors. Translations of Mathematical Monographs. American Mathematical Society (2001) · Zbl 0965.18002
[3] Bruillard, P., Ng, S.-H., Rowell, E.C., Wang, Z.: On classification of modular categories by rank. International Mathematics Research Notices (2016) · Zbl 1344.18008
[4] Cappelli A., Itzykson C., Zuber J.B.: The A-D-E classification of minimal and \[{A_1^{(1)}}\] A1(1) conformal invariant theories. Commun. Math. Phys. 113(1), 1-26 (1987) · Zbl 0639.17008 · doi:10.1007/BF01221394
[5] Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of nondegenerate braided fusion categories. J. Reine Angew. Math. (Crelles Journal) 677, 135-177 (2013) · Zbl 1271.18008
[6] Davydov A., Nikshych D., Ostrik V.: On the structure of the Witt group of braided fusion categories. Sel. Math. 19(1), 237-269 (2013) · Zbl 1345.18005 · doi:10.1007/s00029-012-0093-3
[7] Deligne P.: Catégories Tannakiennes, pp. 111-195. Birkhäuser, Boston (1990) · Zbl 0727.14010
[8] Deligne P.: Catégories tensorielles. Mosc. Math. J. 2, 227-248 (2002) · Zbl 1005.18009
[9] Drinfeld V., Gelaki S., Nikshych D., Ostrik V.: On braided fusion categories I. Sel. Math. 16(1), 1-119 (2010) · Zbl 1201.18005 · doi:10.1007/s00029-010-0017-z
[10] Eliëns, S.: Anyon condensation: Topological symmetry breaking phase transitions and commutative algebra objects in braided tensor categories. Master’s thesis, Universiteit van Amsterdam, Netherlands (2010) · Zbl 0827.17010
[11] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Mathematical Surveys and Monographs. American Mathematical Society (2015) · Zbl 1365.18001
[12] Finkelberg M.: An equivalence of fusion categories. Geom. Funct. Anal. GAFA 6(2), 249-267 (1996) · Zbl 0860.17040 · doi:10.1007/BF02247887
[13] Fuchs J., Schweigert C., Valentino A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321(2), 543-575 (2013) · Zbl 1269.81169 · doi:10.1007/s00220-013-1723-0
[14] Gannon T.: The classification of affine \[{{\rm SU}(3)}\] SU(3) modular invariant partition functions. Commun. Math. Phys. 161(2), 233-263 (1994) · Zbl 0806.17031 · doi:10.1007/BF02099776
[15] Gannon T.: Boundary conformal field theory and fusion ring representations. Nucl. Phys. B 627(3), 506-564 (2002) · Zbl 0990.81152 · doi:10.1016/S0550-3213(01)00632-0
[16] Andersen H.H., Paradowski J.: Fusion categories arising from semisimple Lie algebras. Commun. Math. Phys. 169(3), 563-588 (1995) · Zbl 0827.17010 · doi:10.1007/BF02099312
[17] Huang Y.-Z., Kirillov A., Lepowsky J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337(3), 1143-1159 (2015) · Zbl 1388.17014 · doi:10.1007/s00220-015-2292-1
[18] Humphreys J.E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics. Springer, New York (1972) · Zbl 0254.17004 · doi:10.1007/978-1-4612-6398-2
[19] Joyal A., Street R.: Braided tensor categories. Adv. Math. 102(1), 20-78 (1993) · Zbl 0817.18007 · doi:10.1006/aima.1993.1055
[20] Kirillov A., Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of \[{{\mathfrak{sl}}_2}\] sl2 conformal field theories. Adv. Math. 171(2), 183-227 (2002) · Zbl 1024.17013 · doi:10.1006/aima.2002.2072
[21] Kong L.: Anyon condensation and tensor categories. Nucl. Phys. B 886, 436-482 (2014) · Zbl 1325.81156 · doi:10.1016/j.nuclphysb.2014.07.003
[22] Moore G., Seiberg N.: Lectures on RCFT, pp. 263-361. Springer, Boston (1990) · Zbl 0985.81740
[23] Müger M.: From subfactors to categories and topology II: the quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 180(1-2), 159-219 (2003) · Zbl 1033.18003 · doi:10.1016/S0022-4049(02)00248-7
[24] Müger M.: On the structure of modular categories. Proc. Lond. Math. Soc. 87, 291-308 (2003) · Zbl 1037.18005 · doi:10.1112/S0024611503014187
[25] Neshveyev S., Tuset L.: Autoequivalences of the tensor category of \[{{\mathcal{U}}_q{\mathfrak{g}}}\] Uqg-modules. Int. Math. Res. Not. 15, 3498-3508 (2012) · Zbl 1256.17008
[26] Ostrik V.: Fusion categories of rank 2. Math. Res. Lett. 10, 177-183 (2003) · Zbl 1040.18003 · doi:10.4310/MRL.2003.v10.n2.a5
[27] Ostrik V.: Pivotal fusion categories of rank 3. Mosc. Math. J. 15(2), 373-396 (2015) · Zbl 1354.18009
[28] Pareigis B.: On braiding and dyslexia. J. Algebra 171(2), 413-425 (1995) · Zbl 0816.18003 · doi:10.1006/jabr.1995.1019
[29] Sawin S.F.: Closed subsets of the Weyl alcove and TQFTs. Pac. J. Math. 228(2), 305-324 (2006) · Zbl 1128.17014 · doi:10.2140/pjm.2006.228.305
[30] Sawin S.F.: Quantum groups at roots of unity and modularity. J. Knot Theory Ramif. 15(10), 1245-1277 (2006) · Zbl 1117.17006 · doi:10.1142/S0218216506005160
[31] Schellekens A.N., Warner N.P.: Conformal subalgebras of Kac-Moody algebras. Phys. Rev. D 34, 3092-3096 (1986) · doi:10.1103/PhysRevD.34.3092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.