×

Critical base for the unique codings of fat Sierpinski gasket. (English) Zbl 1448.37013

The authors deal with an invariant subset of the fat Sierpinski gasket \(S_{\beta}\) in \(\mathbb{R}^2\) generated by the iterated function system consisting of all points whose orbit never enters the overlap region \(\mathcal{O}_{\beta}\). The authors investigate the lexicographical characterization of the intrinsic univoque set \[ \widetilde{U}_{\beta}:=\left\{\sum_{i=1}^{\infty} \frac{d_i}{\beta_i}\in S_{\beta}:\sum_{i=1}^{\infty} \frac{d_{n+i}}{\beta_i}\notin \mathcal{O}_{\beta}\quad\forall n\geq 0\right\}. \] Denote the univoque set by \[ U_{\beta}:=\{P\in S_{\beta} : P \mathrm{\,has \, a \,unique \,coding \,with \,alphabet\,} \mathcal{A}\}.\]
Based on this characterization, the authors give an alternate proof of a theorem by N. Sidorov [Nonlinearity 20, No. 5, 1299–1312 (2007; Zbl 1122.60066)]. Furthermore, they prove a theorem which provides an affirmative answer to a conjecture in the above-mentioned paper.
Then the authors investigate all possible admissible words in \(\widetilde{U}_{\beta_c}\) based on the three types of Thue-Morse words with alphabet \(\mathcal{A}\).
Theorem. The number \(\beta_c\) is transcendental.
(1) If \(\beta \in (\beta_G, \beta_c)\), then \(\widetilde{U}_{\beta}\) is countably infinite;
(2) If \(\beta=\beta_c\), then \(\widetilde{U}_{\beta}\) is uncountable but has zero Hausdorff dimension;
(3) If \(\beta\in (\beta_c,2)\), then \(\widetilde{U}_{\beta}\) has positive Hausdorff dimension.
In the final section some questions are posed.

MSC:

37B10 Symbolic dynamics
37E05 Dynamical systems involving maps of the interval
68R15 Combinatorics on words
11A63 Radix representation; digital problems
28A80 Fractals

Citations:

Zbl 1122.60066

References:

[1] Falconer K 1990 Fractal Geometry Mathematical Foundations and Applications (Chichester: Wiley) · Zbl 0689.28003
[2] Sidorov N 2007 Combinatorics of linear iterated function systems with overlaps Nonlinearity20 1299-312 · Zbl 1122.60066 · doi:10.1088/0951-7715/20/5/013
[3] Broomhead D, Montaldi J and Sidorov N 2004 Golden gaskets: variations on the Sierpiński sieve Nonlinearity17 1455-80 · Zbl 1054.28002 · doi:10.1088/0951-7715/17/4/017
[4] Hasselblatt B and Plante D Jr 2014 On the interior of ‘fat’ Sierpiński triangles Exp. Math.23 285-309 · Zbl 1310.28006 · doi:10.1080/10586458.2014.900731
[5] Simon K and Solomyak B 2002 On the dimension of self-similar sets Fractals10 59-65 · Zbl 1088.28504 · doi:10.1142/s0218348x02000963
[6] Jordan T 2005/06 Dimension of fat Sierpiński gaskets Real Anal. Exch.31 97-110 · Zbl 1105.28004 · doi:10.14321/realanalexch.31.1.0097
[7] Jordan T and Pollicott M 2006 Properties of measures supported on fat Sierpinski carpets Ergod. Theor. Dynam. Syst.26 739-54 · Zbl 1114.28006 · doi:10.1017/s0143385705000696
[8] Hochman M 2015 On self-similar sets with overlaps and inverse theorems for entropy in Rd Mem. Am. Math. Soc. to appear (arXiv:1503.09043)
[9] Allouche J-P and Shallit J 1999 The ubiquitous Prouhet-Thue-Morse sequence Sequences and Their Applications (Singapore, 1998)(Discrete Mathematics and Theoretical Computer Science) (London: Springer) pp 1-16 · Zbl 1005.11005 · doi:10.1007/978-1-4471-0551-0_1
[10] Glendinning P and Sidorov N 2001 Unique representations of real numbers in non-integer bases Math. Res. Lett.8 535-43 · Zbl 1002.11009 · doi:10.4310/mrl.2001.v8.n4.a12
[11] Komornik V and Loreti P 1998 Unique developments in non-integer bases Am. Math. Mon.105 636-9 · Zbl 0918.11006 · doi:10.2307/2589246
[12] Daróczy Z and Kátai I 1993 Univoque sequences Publ. Math. Debrecen42 397-407 · Zbl 0809.11008
[13] Parry W 1960 On the β-expansions of real numbers Acta Math. Acad. Sci. Hung.11 401-16 · Zbl 0099.28103 · doi:10.1007/bf02020954
[14] Baiocchi C and Komornik V 2007 Greedy and quasi-greedy expansions in non-integer bases (arXiv:0710.3001v1)
[15] Allaart P C, Baker S and Kong D 2019 Bifurcation sets arising from non-integer base expansions J. Fractal Geom.6 301-41 · Zbl 1435.11102 · doi:10.4171/jfg/79
[16] de Vries M and Komornik V 2009 Unique expansions of real numbers Adv. Math.221 390-427 · Zbl 1166.11007 · doi:10.1016/j.aim.2008.12.008
[17] Allouche J-P and Cosnard M 2000 The Komornik-Loreti constant is transcendental Am. Math. Mon.107 448-9 · Zbl 0997.11052 · doi:10.2307/2695302
[18] Kong D and Li W 2015 Hausdorff dimension of unique beta expansions Nonlinearity28 187-209 · Zbl 1346.37011 · doi:10.1088/0951-7715/28/1/187
[19] Mahler K 1976 Lectures on Transcendental Numbers(Lecture Notes in Mathematics vol 546) (Berlin: Springer) · Zbl 0332.10019 · doi:10.1007/BFb0081107
[20] Kong D, Li W and Dekking F M 2010 Intersections of homogeneous Cantor sets and beta-expansions Nonlinearity23 2815-34 · Zbl 1202.28012 · doi:10.1088/0951-7715/23/11/005
[21] Allaart P C 2017 On univoque and strongly univoque sets Adv. Math.308 575-98 · Zbl 1362.11074 · doi:10.1016/j.aim.2016.12.029
[22] Lind D and Marcus B 1995 An Introduction to Symbolic Dynamics and Coding (Cambridge: Cambridge University Press) · Zbl 1106.37301 · doi:10.1017/CBO9780511626302
[23] Mauldin R D and Williams S C 1988 Hausdorff dimension in graph directed constructions Trans. Am. Math. Soc.309 811-29 · Zbl 0706.28007 · doi:10.1090/s0002-9947-1988-0961615-4
[24] Komornik V, Kong D and Li W 2017 Hausdorff dimension of univoque sets and devil’s staircase Adv. Math.305 165-96 · Zbl 1362.11075 · doi:10.1016/j.aim.2016.03.047
[25] Alcaraz Barrera R, Baker S and Kong D 2019 Entropy, topological transitivity, and dimensional properties of unique q-expansions Trans. Am. Math. Soc.371 3209-58 · Zbl 1435.11016 · doi:10.1090/tran/7370
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.