×

Controllability and ergodicity of three dimensional primitive equations driven by a finite-dimensional force. (English) Zbl 1504.35565

Summary: We study the problems of controllability and ergodicity of the system of three dimensional primitive equations modeling large-scale oceanic and atmospheric motions. The system is driven by an additive force acting only on a finite number of Fourier modes in the temperature equation. We first show that the velocity and temperature components of the equations can be simultaneously approximately controlled to arbitrary position in the phase space. The proof is based on Agrachev-Sarychev type geometric control approach. Next, we study the controllability of the linearization of primitive equations around a non-stationary trajectory of the randomly forced system. Assuming that the probability law of the forcing is decomposable and observable, we prove almost sure approximate controllability by using the same Fourier modes as in the nonlinear setting. Finally, combining the controllability of the linearized system with a criterion from S. Kuksin et al. [Geom. Funct. Anal. 30, No. 1, 126–187 (2020; Zbl 1442.35437)], we establish exponential mixing for the nonlinear primitive equations with a random force.

MSC:

35Q86 PDEs in connection with geophysics
35Q35 PDEs in connection with fluid mechanics
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
76D05 Navier-Stokes equations for incompressible viscous fluids
76U60 Geophysical flows
76M35 Stochastic analysis applied to problems in fluid mechanics
93B05 Controllability
93C20 Control/observation systems governed by partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
37A25 Ergodicity, mixing, rates of mixing
37L55 Infinite-dimensional random dynamical systems; stochastic equations

Citations:

Zbl 1442.35437

References:

[1] Agrachev, AA; Sarychev, AV, Navier-Stokes equations: controllability by means of low modes forcing, J. Math. Fluid Mech., 7, 1, 108-152 (2005) · Zbl 1075.93014 · doi:10.1007/s00021-004-0110-1
[2] Agrachev, AA; Sarychev, AV, Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing, Comm. Math. Phys., 265, 3, 673-697 (2006) · Zbl 1105.93008 · doi:10.1007/s00220-006-0002-8
[3] Agrachev, A. A., Sarychev,A. V.: Solid controllability in fluid dynamics. In Instability in Models Connected with Fluid Flows. I, volume 6 of Int. Math. Ser. (N. Y.), pp. 1-35. Springer, New York, (2008) · Zbl 1141.76026
[4] Boulvard, P-M, Mixing for the primitive equations under bounded non-degenerate noise, Stoch. Partial Differ. Equ. Anal. Comput., 10, 1, 126-159 (2022) · Zbl 1484.35314
[5] Chueshov, I., A squeezing property and its applications to a description of long-time behaviour in the three-dimensional viscous primitive equations, Proc. R. Soc. Edinb. Sect. A, 144, 4, 711-729 (2014) · Zbl 1297.35179 · doi:10.1017/S0308210512001953
[6] Coron, J.-M.: Control and Nonlinearity. Mathematical Surveys and Monographs, 136, Providence, RI (2007) · Zbl 1140.93002
[7] Cao, C.; Titi, ES, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure Appl. Math., 56, 2, 198-233 (2003) · Zbl 1035.37043 · doi:10.1002/cpa.10056
[8] Cao, C.; Titi, ES, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math., 166, 1, 245-267 (2007) · Zbl 1151.35074 · doi:10.4007/annals.2007.166.245
[9] Földes, J.; Glatt-Holtz, N.; Richards, G.; Thomann, E., Ergodic and mixing properties of the Boussinesq equations with a degenerate random forcing, J. Funct. Anal., 269, 8, 2427-2504 (2015) · Zbl 1354.37056 · doi:10.1016/j.jfa.2015.05.014
[10] Glatt-Holtz, NE; Herzog, DP; Mattingly, JC, Scaling and saturation in infinite-dimensional control problems with applications to stochastic partial differential equations, Ann. PDE, 4, 2, 16 (2018) · Zbl 1410.35118 · doi:10.1007/s40818-018-0052-1
[11] Glatt-Holtz, N.; Kukavica, I.; Vicol, V.; Ziane, M., Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55, 5 (2014) · Zbl 1338.37065 · doi:10.1063/1.4875104
[12] Hairer, M.; Mattingly, JC, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164, 3, 993-1032 (2006) · Zbl 1130.37038 · doi:10.4007/annals.2006.164.993
[13] Hairer, M.; Mattingly, JC, A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electron. J. Probab., 16, 23, 658-738 (2011) · Zbl 1228.60072
[14] Herzog, D.; Mattingly, JC, A practical criterion for positivity of transition densities, Nonlinearity, 28, 8, 2823-2845 (2015) · Zbl 1329.60280 · doi:10.1088/0951-7715/28/8/2823
[15] Jurdjevic, V.; Kupka, I., Polynomial control systems, Math. Ann., 272, 3, 361-368 (1985) · Zbl 0554.93033 · doi:10.1007/BF01455564
[16] Ju, N., The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17, 1, 159-179 (2007) · Zbl 1131.35065 · doi:10.3934/dcds.2007.17.159
[17] Jurdjevic, V.: Geometric control theory, vol. 52. Cambridge Studies in Advanced Mathematics (1997) · Zbl 0940.93005
[18] Kobelkov, G., Existence of a solution “in the large” for ocean dynamics equations, J. Math. Fluid Mech., 9, 4, 588-610 (2007) · Zbl 1132.35443 · doi:10.1007/s00021-006-0228-4
[19] Kukavica, I.; Ziane, M., On the regularity of the primitive equations of the ocean, Nonlinearity, 20, 12, 2739-2753 (2007) · Zbl 1136.35069 · doi:10.1088/0951-7715/20/12/001
[20] Kuksin, S.; Nersesyan, V.; Shirikyan, A., Exponential mixing for a class of dissipative PDEs with bounded degenerate noise, Geom. Funct. Anal., 30, 1, 126-187 (2020) · Zbl 1442.35437 · doi:10.1007/s00039-020-00525-5
[21] Kuksin, S.; Nersesyan, V.; Shirikyan, A., Mixing via controllability for randomly forced nonlinear dissipative PDEs, J. Éc. Polytech. Math., 7, 871-896 (2020) · Zbl 1451.35071 · doi:10.5802/jep.130
[22] Kuksin, S.; Shirikyan, A., Mathematics of Two-Dimensional Turbulence (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1333.76003 · doi:10.1017/CBO9781139137119
[23] Kuksin, S.; Zhang, H., Exponential mixing for dissipative PDEs with bounded non-degenerate noise, Stoch. Process. Appl., 130, 8, 4721-4745 (2020) · Zbl 1440.35272 · doi:10.1016/j.spa.2020.01.014
[24] Lions, J-L; Temam, R.; Wang, S., New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5, 2, 237-288 (1992) · Zbl 0746.76019 · doi:10.1088/0951-7715/5/2/001
[25] Lions, J-L; Temam, R.; Wang, S., On the equations of the large-scale ocean, Nonlinearity, 5, 5, 1007-1053 (1992) · Zbl 0766.35039 · doi:10.1088/0951-7715/5/5/002
[26] Mattingly, JC; Pardoux, É., Malliavin calculus for the stochastic 2D Navier-Stokes equation, Comm. Pure Appl. Math., 59, 12, 1742-1790 (2006) · Zbl 1113.60058 · doi:10.1002/cpa.20136
[27] Nersisyan, H., Controllability of 3D incompressible Euler equations by a finite-dimensional external force, ESAIM Control Optim. Calc. Var., 16, 3, 677-694 (2010) · Zbl 1193.35141 · doi:10.1051/cocv/2009017
[28] Nersisyan, H., Controllability of the 3D compressible Euler system, Comm. Part. Differ. Equ., 36, 9, 1544-1564 (2011) · Zbl 1234.93016 · doi:10.1080/03605302.2011.596605
[29] Nersesyan, V., Approximate controllability of Lagrangian trajectories of the 3D Navier-Stokes system by a finite-dimensional force, Nonlinearity, 28, 3, 825-848 (2015) · Zbl 1308.35171 · doi:10.1088/0951-7715/28/3/825
[30] Nersesyan, V., Ergodicity for the randomly forced Navier-Stokes system in a two-dimensional unbounded domain, Ann. Henri Poincaré, 23, 2277-2294 (2021) · Zbl 1491.35315 · doi:10.1007/s00023-022-01163-3
[31] Nersesyan, V., Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension, Math. Control Relat. Fields, 11, 2, 237-251 (2021) · Zbl 1477.35097 · doi:10.3934/mcrf.2020035
[32] d’Onofrio, A., Bounded Noises in Physics, Biology, and Engineering (2013), New York: Springer, New York · Zbl 1276.60002 · doi:10.1007/978-1-4614-7385-5
[33] Petcu, M., On the three-dimensional primitive equations, Adv. Differ. Equ., 11, 11, 1201-1226 (2006) · Zbl 1145.35350
[34] Phan, D.; Rodrigues, SS, Approximate controllability for Navier-Stokes equations in 3D rectangles under Lions boundary conditions, J. Dyn. Control Syst., 25, 3, 351-376 (2019) · Zbl 1416.93034 · doi:10.1007/s10883-018-9412-0
[35] Petcu, M.; Temam, R.; Ziane, M., Some mathematical problems in geophysical fluid dynamics, Handb. Numer. Anal., 14, 577-750 (2009)
[36] Rodrigues, SS, Navier-Stokes equation on the rectangle: controllability by means of low mode forcing, J. Dyn. Control Syst., 12, 4, 517-562 (2006) · Zbl 1105.35085 · doi:10.1007/s10883-006-0004-z
[37] Sarychev, A., Controllability of the cubic Schrödinger equation via a low-dimensional source term, Math. Control Relat. Fields, 2, 3, 247-270 (2012) · Zbl 1251.93037 · doi:10.3934/mcrf.2012.2.247
[38] Shirikyan, A., Approximate controllability of three-dimensional Navier-Stokes equations, Comm. Math. Phys., 266, 1, 123-151 (2006) · Zbl 1105.93016 · doi:10.1007/s00220-006-0007-3
[39] Shirikyan, A., Exact controllability in projections for three-dimensional Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24, 4, 521-537 (2007) · Zbl 1119.93021 · doi:10.1016/j.anihpc.2006.04.002
[40] Shirikyan, A.: Approximate controllability of the viscous Burgers equation on the real line. In Geometric control theory and sub-Riemannian geometry, vol. 5, pp. 351-370. Springer, Cham (2014) · Zbl 1291.93046
[41] Shirikyan, A., Control and mixing for 2D Navier-Stokes equations with space-time localised noise, Ann. Sci. Éc. Norm. Supér. (4), 48, 2, 253-280 (2015) · Zbl 1319.35167 · doi:10.24033/asens.2244
[42] Shirikyan, A., Control theory for the Burgers equation: Agrachev-Sarychev approach, Pure Appl. Funct. Anal., 3, 1, 219-240 (2018) · Zbl 1474.35542
[43] Shirikyan, A., Controllability implies mixing II. Convergence in the dual-Lipschitz metric, J. Eur. Math. Soc. (JEMS), 23, 4, 1381-1422 (2021) · Zbl 1470.37008 · doi:10.4171/JEMS/1036
[44] Temam, R.: Navier-Stokes equations. Theory and numerical analysis. Studies in Mathematics and its Applications 2, North-Holland, Amsterdam (1979) · Zbl 0426.35003
[45] Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In Handbook of mathematical fluid dynamics. Vol. III, pp. 535-657. North-Holland, Amsterdam (2004) · Zbl 1222.35145
[46] Zeitlin, V., Geophysical Fluid Dynamics: Understanding (almost) Everything with Rotating Shallow Water Models (2018), Oxford: Oxford University Press, Oxford · Zbl 1382.86001 · doi:10.1093/oso/9780198804338.001.0001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.