×

On the recurrence and robust properties of Lorenz’63 model. (English) Zbl 1250.82022

Summary: The Lie-Poisson structure of the Lorenz’63 system gives a physical insight into its dynamical and statistical behavior considering the evolution of the associated Casimir functions. We study the invariant density and other recurrence features of a Markov expanding Lorenz-like map of the interval arising in the analysis of the predictability of the extreme values reached by particular physical observables evolving in time under the Lorenz’63 dynamics with the classical set of parameters. Moreover, we prove the statistical stability of such an invariant measure. This allows us to further characterize the Sinai-Ruelle-Bowen (SRB) measure of the system.

MSC:

82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
76D05 Navier-Stokes equations for incompressible viscous fluids
86A10 Meteorology and atmospheric physics
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology

Software:

RODES

References:

[1] Arnold V.I.: Mathematical Methods in Classical Mechanics. Second edition. Springer, Berlin-Heidelberg-NewYork (1989)
[2] Alves J.F.: Strong statistical stability of non-uniformly expanding maps. Nonlinearity 17(4), 1193–1215 (2004) · Zbl 1061.37020 · doi:10.1088/0951-7715/17/4/004
[3] Afraimovich V.S., Bykov V.V., Shil’nikov L.P.: On the appearence and structure of the Lorenz attractor. Dokl. Acad. Sci. USSR 234, 336–339 (1977)
[4] Aaronson J., Denker M.: Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps. Stoch. Dyn. 1, 193–237 (2001) · Zbl 1039.37002 · doi:10.1142/S0219493701000114
[5] Alves J.F., Viana M.: Statistical stability for robust classes of maps with non-uniform expansion. Erg. Th. Dyn. Syst. 22(1), 1–32 (2002) · Zbl 1067.37034 · doi:10.1017/S0143385702000019
[6] Broise A.: Transformations dilatantes de l’intervalle et théorèmes limites. Asterisque 238, 5–110 (1996) · Zbl 0988.37032
[7] Bhansali J.R., Holland M.: Frequency analysis of chaotic intermittency maps with slowly decaying correlations. Stat. Sinica 17, 15–41 (2007) · Zbl 1145.62068
[8] Bahsoun W., Vaienti S.: Metastability of certain intermittent maps. Nonlinearity 25(1), 107–124 (2012) · Zbl 1243.37001 · doi:10.1088/0951-7715/25/1/107
[9] Cristadoro G-P., Haydn N., Marie Ph., Vaienti S.: Statistical properties of intermittent maps with unbounded derivative. Nonlinearity 23, 1071–1095 (2010) · Zbl 1194.37067 · doi:10.1088/0951-7715/23/5/003
[10] Corti S., Molteni F., Palmer T.N.: Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802 (1999) · doi:10.1038/19745
[11] Foias C., Jolly M.S., Kukavica I., Titi E.S.: The Lorenz equations as a metaphore for the Navier-Stokes equations. Disc. Con. Dyn. Sys. 7(2), 403–429 (2001) · Zbl 1052.76012 · doi:10.3934/dcds.2001.7.403
[12] Guckenheimer, J.: A strange, strange attractor. In: The Hopf Bifurcation and its Applications, J. E. Marsden, M. McCracken, eds., New York: Springer-Verlag, 1976
[13] Galias, Z., Tucker, W.: Short periodic orbits for the Lorenz system. In: Procedings of the IEEE International Conference on Signals and Electronic Systems 2008 (ICSES 08), Piscataway, NJ: IEEE, 2008, pp. 285–288
[14] Guckenheimer J., Williams R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES 50, 307–320 (1979) · Zbl 0436.58018
[15] Keller G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete 69(3), 461–478 (1985) · Zbl 0574.28014 · doi:10.1007/BF00532744
[16] Kumar Mittal A., Dwivedi S., Chandra Pandey A.: Bifurcation analysis of a paradigmatic model of monsoon prediction. Nonlinear Proc. in Geophys. 12, 707–715 (2005) · doi:10.5194/npg-12-707-2005
[17] Diaz-Ordaz K.: Decay of correlations for non-Hölder observables for one-dimensional expanding Lorent-like maps. Disc. Con. Dyn. Sys. 15, 159–176 (2006) · Zbl 1115.37039 · doi:10.3934/dcds.2006.15.159
[18] Lorenz E.N.: Deterministic Nonperiodic Flow. J. Atmos. Sci. 20, 130–141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[19] Labarca R., Moreira C.G.: Essential Dynamics for Lorenz maps on the real line and the Lexicographical World. Ann. I. H. Poincaré 23, 683–694 (2006) · Zbl 1112.37009 · doi:10.1016/j.anihpc.2005.09.001
[20] Lucarini V.: Evidence of Dispersion Relations for the Nonlinear Response of the Lorenz 63 System. J. Stat. Phys. 134, 381–400 (2009) · Zbl 1162.82015 · doi:10.1007/s10955-008-9675-z
[21] Liverani C., Saussol B., Vaienti S.: Conformal measures and decay of correlations for covering weighted systems. Erg. Th. Dyn. Syst. 18, 1399–1420 (1998) · Zbl 0915.58061 · doi:10.1017/S0143385798118023
[22] Young L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999) · Zbl 0983.37005 · doi:10.1007/BF02808180
[23] Marsden J.E., Ratiu T.S.: Indroduction to Mechanics and Symmetry. Second edition. Springer, Berlin-Heidelberg-NewYork (1998)
[24] Diaz-Ordaz K., Holland M.P., Luzzatto S.: Statistical properties of one-dimensional maps with critical points and singularities. Stoch. and Dyn. 6, 423–458 (2006) · Zbl 1130.37362 · doi:10.1142/S0219493706001852
[25] Pelino V., Maimone F.: Energetics, skeletal dynamics, and long term predictions on Kolmogorov-Lorenz systems. Phys. Rev. E 76, 046214 (2007) · doi:10.1103/PhysRevE.76.046214
[26] Pasini A., Pelino V.: A unified view of Kolmogorov and Lorenz systems. Phys. Lett. A 275, 435–445 (2000) · Zbl 1115.76320 · doi:10.1016/S0375-9601(00)00620-4
[27] Pelino V., Pasini A.: Dissipation in Lie–Poisson systems and the Lorenz-84 model. Phys. Lett. A 291, 389–396 (2001) · Zbl 0977.37045 · doi:10.1016/S0375-9601(01)00764-2
[28] Selten F.M.: An Efficient Description of the Dynamics of Barotropic Flow. J. of Atm. Sci. 52(7), 915–936 (1995) · doi:10.1175/1520-0469(1995)052<0915:AEDOTD>2.0.CO;2
[29] Sparrow C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, Berlin-Heidelberg-NewYork (1982) · Zbl 0504.58001
[30] Tucker W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comp. Math. 2(1), 53–117 (2002) · Zbl 1047.37012
[31] Viana M.: What’s new on Lorenz strange attractors? Math. Intell. 22(3), 6–19 (2000) · Zbl 1052.37026 · doi:10.1007/BF03025276
[32] Zeitlin V.: Self-Consistent Finite-Mode Approximations for the Hydrodynamics of an Incompressible Fluid on Nonrotating and Rotating Spheres. Phys. Rev. Lett. 93, 264501 (2004) · doi:10.1103/PhysRevLett.93.264501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.