Skip to main content
Log in

On the Recurrence and Robust Properties of Lorenz’63 Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Lie-Poisson structure of the Lorenz’63 system gives a physical insight on its dynamical and statistical behavior considering the evolution of the associated Casimir functions. We study the invariant density and other recurrence features of a Markov expanding Lorenz-like map of the interval arising in the analysis of the predictability of the extreme values reached by particular physical observables evolving in time under the Lorenz’63 dynamics with the classical set of parameters. Moreover, we prove the statistical stability of such an invariant measure. This will allow us to further characterize the SRB measure of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Mathematical Methods in Classical Mechanics. Second edition. Springer, Berlin-Heidelberg-NewYork (1989)

    Google Scholar 

  2. Alves J.F.: Strong statistical stability of non-uniformly expanding maps. Nonlinearity 17(4), 1193–1215 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Afraimovich V.S., Bykov V.V., Shil’nikov L.P.: On the appearence and structure of the Lorenz attractor. Dokl. Acad. Sci. USSR 234, 336–339 (1977)

    ADS  Google Scholar 

  4. Aaronson J., Denker M.: Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps. Stoch. Dyn. 1, 193–237 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alves J.F., Viana M.: Statistical stability for robust classes of maps with non-uniform expansion. Erg. Th. Dyn. Syst. 22(1), 1–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broise A.: Transformations dilatantes de l’intervalle et théorèmes limites. Asterisque 238, 5–110 (1996)

    MathSciNet  Google Scholar 

  7. Bhansali J.R., Holland M.: Frequency analysis of chaotic intermittency maps with slowly decaying correlations. Stat. Sinica 17, 15–41 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Bahsoun W., Vaienti S.: Metastability of certain intermittent maps. Nonlinearity 25(1), 107–124 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Cristadoro G-P., Haydn N., Marie Ph., Vaienti S.: Statistical properties of intermittent maps with unbounded derivative. Nonlinearity 23, 1071–1095 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Corti S., Molteni F., Palmer T.N.: Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802 (1999)

    Article  ADS  Google Scholar 

  11. Foias C., Jolly M.S., Kukavica I., Titi E.S.: The Lorenz equations as a metaphore for the Navier-Stokes equations. Disc. Con. Dyn. Sys. 7(2), 403–429 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guckenheimer, J.: A strange, strange attractor. In: The Hopf Bifurcation and its Applications, J. E. Marsden, M. McCracken, eds., New York: Springer-Verlag, 1976

  13. Galias, Z., Tucker, W.: Short periodic orbits for the Lorenz system. In: Procedings of the IEEE International Conference on Signals and Electronic Systems 2008 (ICSES 08), Piscataway, NJ: IEEE, 2008, pp. 285–288

  14. Guckenheimer J., Williams R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES 50, 307–320 (1979)

    Google Scholar 

  15. Keller G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete 69(3), 461–478 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kumar Mittal A., Dwivedi S., Chandra Pandey A.: Bifurcation analysis of a paradigmatic model of monsoon prediction. Nonlinear Proc. in Geophys. 12, 707–715 (2005)

    Article  ADS  Google Scholar 

  17. Diaz-Ordaz K.: Decay of correlations for non-Hölder observables for one-dimensional expanding Lorent-like maps. Disc. Con. Dyn. Sys. 15, 159–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorenz E.N.: Deterministic Nonperiodic Flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  19. Labarca R., Moreira C.G.: Essential Dynamics for Lorenz maps on the real line and the Lexicographical World. Ann. I. H. Poincaré 23, 683–694 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Lucarini V.: Evidence of Dispersion Relations for the Nonlinear Response of the Lorenz 63 System. J. Stat. Phys. 134, 381–400 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Liverani C., Saussol B., Vaienti S.: Conformal measures and decay of correlations for covering weighted systems. Erg. Th. Dyn. Syst. 18, 1399–1420 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Young L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marsden J.E., Ratiu T.S.: Indroduction to Mechanics and Symmetry. Second edition. Springer, Berlin-Heidelberg-NewYork (1998)

    Google Scholar 

  24. Diaz-Ordaz K., Holland M.P., Luzzatto S.: Statistical properties of one-dimensional maps with critical points and singularities. Stoch. and Dyn. 6, 423–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pelino V., Maimone F.: Energetics, skeletal dynamics, and long term predictions on Kolmogorov-Lorenz systems. Phys. Rev. E 76, 046214 (2007)

    Article  ADS  Google Scholar 

  26. Pasini A., Pelino V.: A unified view of Kolmogorov and Lorenz systems. Phys. Lett. A 275, 435–445 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Pelino V., Pasini A.: Dissipation in Lie–Poisson systems and the Lorenz-84 model. Phys. Lett. A 291, 389–396 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Selten F.M.: An Efficient Description of the Dynamics of Barotropic Flow. J. of Atm. Sci. 52(7), 915–936 (1995)

    Article  ADS  Google Scholar 

  29. Sparrow C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, Berlin-Heidelberg-NewYork (1982)

    Book  MATH  Google Scholar 

  30. Tucker W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comp. Math. 2(1), 53–117 (2002)

    MATH  Google Scholar 

  31. Viana M.: What’s new on Lorenz strange attractors? Math. Intell. 22(3), 6–19 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zeitlin V.: Self-Consistent Finite-Mode Approximations for the Hydrodynamics of an Incompressible Fluid on Nonrotating and Rotating Spheres. Phys. Rev. Lett. 93, 264501 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gianfelice.

Additional information

Communicated by G. Gallavotti

Partially supported by GREFI-MEFI and PEPS Mathematical Methods of Climate Models.

Partially supported by PEPS Mathematical Methods of Climate Models.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gianfelice, M., Maimone, F., Pelino, V. et al. On the Recurrence and Robust Properties of Lorenz’63 Model. Commun. Math. Phys. 313, 745–779 (2012). https://doi.org/10.1007/s00220-012-1438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1438-7

Keywords

Navigation