×

An entropy stable discontinuous Galerkin method for the two-layer shallow water equations on curvilinear meshes. (English) Zbl 1533.65191

The document addresses the development of a numerical method to solve the two-layer shallow water equations, which are fundamental in modelling the dynamics of two immiscible fluid layers of varying densities under shallow water assumption. The authors propose an entropy stable nodal discontinuous Galerkin spectral element method (DGSEM) formulated on curvilinear meshes, leveraging the properties of Legendre-Gauss-Lobatto nodes for high-order, path-conservative, and entropy conservative approximations.
The scientific problem tackled in the paper revolves around the computational challenges associated with the two-layer shallow water system, particularly the difficulties arising from nonconservative products that affect wave propagation, making the system only conditionally hyperbolic. The authors’ method aims to ensure entropy stability, a well-balanced nature for discontinuous bathymetry, and the preservation of steady-state solutions, which are critical for accurate and stable numerical simulations of such fluid dynamics problems.
Methodologically, the paper details the construction of the DGSEM, emphasizing the use of summation-by-parts property, flux differencing formulation, and specific combinations of numerical fluxes and discretization strategies for nonconservative terms to achieve entropy conservation and stability. This approach ensures the method’s applicability to complex domain geometries and its robustness in handling discontinuities and maintaining the well-balanced property.
The main findings of the study include the verification of theoretical properties through numerical tests, demonstrating convergence, entropy stability, and the well-balanced nature of the scheme. The research contributes significantly to the field of computational fluid dynamics by providing a robust and accurate method for simulating two-layer shallow water flows over curvilinear domains, with potential applications ranging from environmental to engineering problems involving fluid interfaces.
This paper’s significance lies in its advancement of numerical methods for fluid dynamics, offering a tool that combines high-order accuracy with the critical capability to respect the physical laws of entropy and mass conservation in challenging scenarios of fluid dynamics.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D32 Numerical quadrature and cubature formulas
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76T06 Liquid-liquid two component flows
86A05 Hydrology, hydrography, oceanography
76M22 Spectral methods applied to problems in fluid mechanics
35L50 Initial-boundary value problems for first-order hyperbolic systems
35Q30 Navier-Stokes equations

Software:

Trixi.jl

References:

[1] Abgrall, R.; Karni, S., Two-layer shallow water system: a relaxation approach, SIAM J. Sci. Comput., 31, 3, 1603-1627 (2009) · Zbl 1188.76229 · doi:10.1137/06067167X
[2] Ainsworth, M., Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, J. Comput. Phys., 198, 1, 106-130 (2004) · Zbl 1058.65103 · doi:10.1016/j.jcp.2004.01.004
[3] Bohm, M.; Winters, AR; Gassner, GJ; Derigs, D.; Hindenlang, F.; Saur, J., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations, part I: theory and numerical verification, J. Comput. Phys., 422 (2020) · Zbl 07508372 · doi:10.1016/j.jcp.2018.06.027
[4] Bouchut, F.; Zeitlin, V., A robust well-balanced scheme for multi-layer shallow water equations, Discrete Contin. Dyn. Syst. Ser. B, 13, 4, 739-758 (2010) · Zbl 1308.76060
[5] Carpenter, MH; Fisher, TC; Nielsen, EJ; Frankel, SH, Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140 · doi:10.1137/130932193
[6] Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge-Kutta schemes. NASA Report TM 109112, NASA Langley Research Center (1994)
[7] Castro, MJ; García-Rodríguez, JA; González-Vida, JM; Macías, J.; Parés, C., Improved FVM for two-layer shallow-water models: application to the Strait of Gibraltar, Adv. Eng. Softw., 38, 6, 386-398 (2007) · doi:10.1016/j.advengsoft.2006.09.012
[8] Chan, J.; Lin, Y.; Warburton, T., Entropy stable modal discontinuous Galerkin schemes and wall boundary conditions for the compressible Navier-Stokes equations, J. Comput. Phys., 448 (2022) · Zbl 1537.65127 · doi:10.1016/j.jcp.2021.110723
[9] Chertock, A.; Dudzinski, M.; Kurganov, A.; Lukáčová-Medvid’ová, M., Well-balanced schemes for the shallow water equations with Coriolis forces, Numer. Math., 138, 939-973 (2018) · Zbl 1448.65097 · doi:10.1007/s00211-017-0928-0
[10] Chiapolino, A.; Saurel, R., Models and methods for two-layer shallow water flows, J. Comput. Phys., 371, 1043-1066 (2018) · Zbl 1415.76061 · doi:10.1016/j.jcp.2018.05.034
[11] Coquel, F.; Marmignon, C.; Rai, P.; Renac, F., An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 431 (2021) · Zbl 07511452 · doi:10.1016/j.jcp.2021.110135
[12] Courant, R.; Friedrichs, K.; Lewy, H., On the partial difference equations of mathematical physics, IBM J. Res. Dev., 11, 2, 215-234 (1967) · Zbl 0145.40402 · doi:10.1147/rd.112.0215
[13] Dal Maso, G.; Lefloch, PG; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 6, 483-548 (1995) · Zbl 0853.35068
[14] Derigs, D.; Winters, AR; Gassner, GJ; Walch, S.; Bohm, M., Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations, J. Comput. Phys., 364, 420-467 (2018) · Zbl 1392.76037 · doi:10.1016/j.jcp.2018.03.002
[15] Díaz, MC; Fernández-Nieto, E.; Garres-Díaz, J.; de Luna, TM, Discussion on different numerical treatments on the loss of hyperbolicity for the two-layer shallow water system, Adv. Water Resour., 182 (2023) · doi:10.1016/j.advwatres.2023.104587
[16] Ersing, P., Winters, A.R.: Reproducibility repository for “An entropy stable discontinuous Galerkin method for the two-layer shallow water equations on curvilinear meshes”. doi:10.5281/zenodo.10378252 (2023)
[17] Fernández, EG; Díaz, MC; Dumbser, M.; de Luna, TM, An arbitrary high order well-balanced ADER-DG numerical scheme for the multilayer shallow-water model with variable density, J. Sci. Comput., 90, 1, 52 (2022) · Zbl 07454834 · doi:10.1007/s10915-021-01734-2
[18] Fisher, TC; Carpenter, MH; Nordström, J.; Yamaleev, NK; Swanson, C., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 353-375 (2013) · Zbl 1284.65102 · doi:10.1016/j.jcp.2012.09.026
[19] Fjordholm, US, Energy conservative and stable schemes for the two-layer shallow water equations, Hyperbolic Probl. Theory Numer. Appl., 17, 414 (2012) · Zbl 1402.76086 · doi:10.1142/9789814417099_0039
[20] Franquet, E.; Perrier, V., Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, J. Comput. Phys., 231, 11, 4096-4141 (2012) · Zbl 1426.76530 · doi:10.1016/j.jcp.2012.02.002
[21] Fu, G., A high-order velocity-based discontinuous Galerkin scheme for the shallow water equations: local conservation, entropy stability, well-balanced property, and positivity preservation, J. Sci. Comput., 92, 3, 86 (2022) · Zbl 1495.65211 · doi:10.1007/s10915-022-01902-y
[22] Fyhn, EH; Lervåg, KY; Ervik, Å.; Wilhelmsen, Ø., A consistent reduction of the two-layer shallow-water equations to an accurate one-layer spreading model, Phys. Fluids, 31, 12 (2019) · doi:10.1063/1.5126168
[23] Gassner, GJ, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065 · doi:10.1137/120890144
[24] Gassner, GJ; Winters, AR, A novel robust strategy for discontinuous Galerkin methods in computational fluid mechanics: Why? When? What? Where?, Frontiers in Physics, 8 (2021) · doi:10.3389/fphy.2020.500690
[25] Gassner, GJ; Winters, AR; Kopriva, DA, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280 · doi:10.1016/j.jcp.2016.09.013
[26] Gassner, GJ; Winters, AR; Kopriva, DA, A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272, 291-308 (2016) · Zbl 1410.65393
[27] Hennemann, S.; Rueda-Ramírez, AM; Hindenlang, FJ; Gassner, GJ, A provably entropy stable sub cell shock capturing approach for high order split form DG for the compressible Euler equations, J. Comput. Phys., 426 (2021) · Zbl 07510051 · doi:10.1016/j.jcp.2020.109935
[28] Hesthaven, JS; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2007), Berlin: Springer, Berlin
[29] Izem, N.; Seaid, M.; Wakrim, M., A discontinuous Galerkin method for two-layer shallow water equations, Math. Comput. Simul., 120, 12-23 (2016) · Zbl 1540.76091 · doi:10.1016/j.matcom.2015.04.009
[30] Kim, J., LeVeque, R.J.: Two-layer shallow water system and its applications. In: Proceedings of the Twelth International Conference on Hyperbolic Problems, Maryland, vol. 52, p. 102 (2008) · Zbl 1189.35230
[31] Kopriva, DA, Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 301-327 (2006) · Zbl 1178.76269 · doi:10.1007/s10915-005-9070-8
[32] Kopriva, DA, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Berlin: Springer, Berlin · Zbl 1172.65001 · doi:10.1007/978-90-481-2261-5
[33] Kopriva, D.A.: A polynomial spectral calculus for analysis of DG spectral element methods. In: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016: Selected Papers from the ICOSAHOM conference, June 27-July 1, 2016, pp. 21-40. Springer, Rio de Janeiro (2017) · Zbl 1382.65345
[34] Kreiss, HO, Initial boundary value problems for hyperbolic systems, Commun. Pure. Appl. Math., 23, 3, 277-298 (1970) · Zbl 0193.06902 · doi:10.1002/cpa.3160230304
[35] Krvavica, N.; Tuhtan, M.; Jelenić, G., Analytical implementation of Roe solver for two-layer shallow water equations with accurate treatment for loss of hyperbolicity, Adv. Water Resour., 122, 187-205 (2018) · doi:10.1016/j.advwatres.2018.10.017
[36] Kurganov, A.; Petrova, G., Central-upwind schemes for two-layer shallow water equations, SIAM J. Sci. Comput., 31, 3, 1742-1773 (2009) · Zbl 1188.76230 · doi:10.1137/080719091
[37] Lee, WK; Borthwick, AG; Taylor, PH, A fast adaptive quadtree scheme for a two-layer shallow water model, J. Comput. Phys., 230, 12, 4848-4870 (2011) · Zbl 1416.76183 · doi:10.1016/j.jcp.2011.03.007
[38] Merriam, ML, An Entropy-Based Approach to Nonlinear Stability (1989), Stanford: Stanford University, Stanford
[39] Nycander, J.; Döös, K., Open boundary conditions for barotropic waves, J. Geophys. Res. Oceans, 108, C5, 1 (2003) · doi:10.1029/2002JC001529
[40] Oliger, J.; Sundström, A., Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Appl. Math., 35, 3, 419-446 (1978) · Zbl 0397.35067 · doi:10.1137/0135035
[41] Ostapenko, V., Numerical simulation of wave flows caused by a shoreside landslide, J. Appl. Mech. Tech. Phys., 40, 4, 647-654 (1999) · Zbl 0951.76016 · doi:10.1007/BF02468439
[42] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 1, 300-321 (2006) · Zbl 1130.65089 · doi:10.1137/050628052
[43] Paz, RR; Storti, MA; Garelli, L., Local absorbent boundary condition for non-linear hyperbolic problems with unknown Riemann invariants, Comput. Fluids, 40, 1, 52-67 (2011) · Zbl 1245.76053 · doi:10.1016/j.compfluid.2010.08.001
[44] Pimentel-García, E.; Parés, C.; Castro, MJ; Koellermeier, J., On the efficient implementation of PVM methods and simple Riemann solvers: application to the Roe method for large hyperbolic systems, Appl. Math. Comput., 388 (2021) · Zbl 1508.76075
[45] Ranocha, H., Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods, GEM Int. J. Geomath., 8, 1, 85-133 (2017) · Zbl 1432.65156 · doi:10.1007/s13137-016-0089-9
[46] Ranocha, H., Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives, BIT Numer. Math., 59, 2, 547-563 (2019) · Zbl 1482.65151 · doi:10.1007/s10543-018-0736-7
[47] Ranocha, H.; Schlottke-Lakemper, M.; Winters, AR; Faulhaber, E.; Chan, J.; Gassner, G., Adaptive numerical simulations with Trixi.jl: a case study of Julia for scientific computing, Proc. JuliaCon Conf., 1, 1, 77 (2022) · doi:10.21105/jcon.00077
[48] Renac, F., Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows, J. Comput. Phys., 382, 1-26 (2019) · Zbl 1451.76073 · doi:10.1016/j.jcp.2018.12.035
[49] Rueda-Ramírez, AM; Gassner, GJ, A flux-differencing formula for split-form summation by parts discretizations of non-conservative systems: applications to subcell limiting for magneto-hydrodynamics, J. Comput. Phys., 496 (2024) · Zbl 07808005 · doi:10.1016/j.jcp.2023.112607
[50] Rueda-Ramírez, AM; Hennemann, S.; Hindenlang, FJ; Winters, AR; Gassner, GJ, An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations, part II: subcell finite volume shock capturing, J. Comput. Phys., 444 (2021) · Zbl 07515469 · doi:10.1016/j.jcp.2021.110580
[51] Rueda-Ramírez, AM; Hindenlang, FJ; Chan, J.; Gassner, GJ, Entropy-stable Gauss collocation methods for ideal magneto-hydrodynamics, J. Comput. Phys., 475 (2023) · Zbl 07649272 · doi:10.1016/j.jcp.2022.111851
[52] Savage, SB; Hutter, K., The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215 (1989) · Zbl 0659.76044 · doi:10.1017/S0022112089000340
[53] Schlottke-Lakemper, M.; Winters, AR; Ranocha, H.; Gassner, GJ, A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics, J. Comput. Phys., 442 (2021) · Zbl 07513798 · doi:10.1016/j.jcp.2021.110467
[54] Swartenbroekx, C.; Soares-Frazão, S.; Spinewine, B.; Guinot, V.; Zech, Y., Hyperbolicity preserving HLL solver for two-layer shallow-water equations applied to dam-break flows, River Flow, 2010, 1379-1388 (2010)
[55] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., 49, 179, 91-103 (1987) · Zbl 0641.65068 · doi:10.1090/S0025-5718-1987-0890255-3
[56] Waruszewski, M.; Kozdon, JE; Wilcox, LC; Gibson, TH; Giraldo, FX, Entropy stable discontinuous Galerkin methods for balance laws in non-conservative form: applications to the Euler equations with gravity, J. Comput. Phys., 468 (2022) · Zbl 07578914 · doi:10.1016/j.jcp.2022.111507
[57] Wintermeyer, N.; Winters, AR; Gassner, GJ; Kopriva, DA, An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry, J. Comput. Phys., 340, 200-242 (2017) · Zbl 1380.65291 · doi:10.1016/j.jcp.2017.03.036
[58] Winters, AR; Gassner, GJ, A comparison of two entropy stable discontinuous Galerkin spectral element approximations for the shallow water equations with non-constant topography, J. Comput. Phys., 301, 357-376 (2015) · Zbl 1349.76285 · doi:10.1016/j.jcp.2015.08.034
[59] Winters, AR; Gassner, GJ, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304, 72-108 (2016) · Zbl 1349.76407 · doi:10.1016/j.jcp.2015.09.055
[60] Winters, A.R., Kopriva, D.A., Gassner, G.J., Hindenlang, F.: Construction of modern robust nodal discontinuous Galerkin spectral element methods for the compressible Navier-Stokes equations. In: Efficient High-Order Discretizations for Computational Fluid Dynamics, pp. 117-196 (2021) · Zbl 1472.76066
[61] Wu, X.; Kubatko, EJ; Chan, J., High-order entropy stable discontinuous Galerkin methods for the shallow water equations: curved triangular meshes and GPU acceleration, Comput. Math. Appl., 82, 179-199 (2021) · Zbl 1524.65613 · doi:10.1016/j.camwa.2020.11.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.