×

Random attractors for the stochastic Navier-Stokes equations on the 2D unit sphere. (English) Zbl 1390.35260

Summary: In this paper we prove the existence of random attractors for the Navier-Stokes equations on 2 dimensional sphere under random forcing irregular in space and time. We also deduce the existence of an invariant measure.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B41 Attractors
35R60 PDEs with randomness, stochastic partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography
76M35 Stochastic analysis applied to problems in fluid mechanics

References:

[1] Agrachev, A., Sarychev, A.: Solid Controllability in Fluid Dynamics. Instability in Models Connected with Fluid Flows. I. International Mathematical Series (N. Y.), vol. 6, pp. 1-35. Springer, New York (2008) · Zbl 1141.76026
[2] Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998) · Zbl 0906.34001 · doi:10.1007/978-3-662-12878-7
[3] Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer, New York (1998) · Zbl 0896.53003 · doi:10.1007/978-3-662-13006-3
[4] Avez, A., Bamberger, Y.: Mouvements sphériques des fluides visqueux incompressibles. J. Méc. 17(1), 107-145 (1978) · Zbl 0387.76030
[5] Brzeźniak, Z.: On Sobolev and Besov spaces regularity of Brownian paths. Stoch. Stoch. Rep. 56, 1-15 (1996) · Zbl 0890.60077 · doi:10.1080/17442509608834032
[6] Brzeźniak, Z.: Stochastic convolution in Banach spaces. Stoch. Stoch. Rep. 61, 245-295 (1997) · Zbl 0891.60056 · doi:10.1080/17442509708834122
[7] Brzeźniak, Z., Capiński, M., Flandoli, F.: Pathwise global attractors for stationary random dynamical systems. Probab. Theory Relat. Fields 95(1), 87-102 (1993) · Zbl 0791.58056 · doi:10.1007/BF01197339
[8] Brzeźniak, Z., Caraballo, T., Langa, J.A., Li, Y., Lukaszewicz, G., Real, J.: Random attractors for stochastic 2d-Navier-Stokes equations in some unbounded domains. J. Differ. Equ. 255(11), 3897-3919 (2013) · Zbl 1283.35075 · doi:10.1016/j.jde.2013.07.043
[9] Brzeźniak, Z., Goldys, B., Le Gia, Q.T.: Random dynamical systems generated by stochastic Navier-Stokes equations on a rotating sphere. J. Math. Anal. Appl. 426(1), 505-545 (2015) · Zbl 1322.60102 · doi:10.1016/j.jmaa.2015.01.054
[10] Brzeźniak, Z., Li, Y.: Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains. Trans. Am. Math. Soc. 358, 5587-5629 (2006) · Zbl 1113.60062 · doi:10.1090/S0002-9947-06-03923-7
[11] Brzeźniak, Z., Peszat, S.: Stochastic two dimensional Euler equations. Ann. Probab. 20, 1796-1832 (2001) · Zbl 1032.60055
[12] Brzeźniak, Z., van Neerven, J.: Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43, 261-303 (2003) · Zbl 1056.60057 · doi:10.1215/kjm/1250283728
[13] Caraballo, T., Łukaszewicz, G., Real, J.: Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal. 64(3), 484-498 (2006) · Zbl 1128.37019 · doi:10.1016/j.na.2005.03.111
[14] Cao, C., Rammaha, M.A., Titi, E.S.: The Navier-Stokes equations on the rotating 2-d sphere: Gevrey regularity and asymptotic degrees of freedom. Zeit. Ang. Math. Phys. 50, 341-360 (1999) · Zbl 0928.35120 · doi:10.1007/PL00001493
[15] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977) · Zbl 0346.46038
[16] Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Probab. Theory Relat. Fields 100, 365-393 (1994) · Zbl 0819.58023 · doi:10.1007/BF01193705
[17] Crauel, H.: Random Probability Measures on Polish Spaces, Stochastics Monographs, vol. 11. Taylor & Francis, London (2002) · Zbl 1031.60041
[18] Crauel, H.: Global random attractors are uniquely determined by attracting deterministic compact sets. Ann. Math. Pura Appl., Ser. IV CLXXVI 100, 57-72 (1999) · Zbl 0954.37027
[19] Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Differ. Equ. 9, 307-341 (1995) · Zbl 0884.58064 · doi:10.1007/BF02219225
[20] Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992) · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[21] Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems. Cambridge University Press, Cambridge (1996) · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[22] Driver, B.K.: Curved wiener space analysis. real and stochastic analysis. In: Real and Stochastic Analysis, Trends Mathematics, pp. 42-198. Birkhäuser Boston, Boston, MA (2004) · Zbl 1085.60032
[23] Dubrovin, V.A., Novikov, S.P., Fomenko, A.T.: Modern Geometry: Theory and Applications. Nauka, Moscow, 1986. English translation of 1st edn, Parts I, II. Springer (1984,1985) · Zbl 0529.53002
[24] Ebin, D., Marsden, J.: Groups of diffeomorphisms and the motion of an imcompressible fluid. Ann. Math. 92, 102-163 (1970) · Zbl 0211.57401 · doi:10.2307/1970699
[25] Fengler, M.J., Freeden, W.: A nonlinear Galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible Navier-Stokes equation on the sphere. SIAM J. Sci. Comput. 27, 967-994 (2005) · Zbl 1130.76328 · doi:10.1137/040612567
[26] Flandoli, F., Schmalfuss, B.: Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise. Stoch. Stoch. Rep. 59, 21-45 (1996) · Zbl 0870.60057 · doi:10.1080/17442509608834083
[27] Ganesh, M., Le Gia, Q.T., Sloan, I.H.: A pseudospectral quadrature method for Navier-Stokes equations on rotating spheres. Math. Comput. 80, 1397-1430 (2011) · Zbl 1387.65109 · doi:10.1090/S0025-5718-2010-02440-8
[28] Grigoryan, A.: Heat Kernel and Analysis on Manifolds. AMS, Providence (2000)
[29] Hairer, M., Mattingly, J.: A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electron. J. Probab. 16(23), 658-738 (2011) · Zbl 1228.60072 · doi:10.1214/EJP.v16-875
[30] Il’in, A.A.: The Navier-Stokes and Euler equations on two dimensional manifolds. Math. USSR. Sbornik 69, 559-579 (1991) · Zbl 0724.35088 · doi:10.1070/SM1991v069n02ABEH002116
[31] Il’in, A.A.: Partially dissipative semigroups generated by the Navier-Stokes system on two dimensional manifolds, and their attractors. Russ. Acad. Sci. Sbornik Math. 78, 47-76 (1994) · Zbl 0813.35080 · doi:10.1070/SM1994v078n01ABEH003458
[32] Il’in, A.A., Filatov, A.N.: On unique solvability of the Navier-Stokes equations on the two dimensional sphere. Sov. Math. Dokl. 38, 9-13 (1989) · Zbl 0688.35076
[33] Kloeden, P.E., Schmalfuss, B.: Asymptotic behaviour of nonautonomous difference inclusions. Syst. Control Lett. 33(4), 275-280 (1998) · Zbl 0902.93043 · doi:10.1016/S0167-6911(97)00107-2
[34] Norbury, J., Roulstone, I. (eds.): Large-Scale Atmosphere-Ocean Dynamics, vol. 1 & 2. Cambridge University Press (2002) · Zbl 0994.00019
[35] Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Mathematics (Rozprawy Mat.), vol. 426 (2004) · Zbl 1053.60071
[36] Schmalfuss, B.; Fiedler, B. (ed.); Gröger, K. (ed.); Sprekels, J. (ed.), Attractors for non-autonomous dynamical systems, 684-689 (2000), Berlin · Zbl 0971.37038 · doi:10.1142/9789812792617_0136
[37] Schwarz, G.: Hodge Decomposition: A Method for Solving Boundary Value Problems. Lectures Notes in Mathematics, vol. 1607. Springer, Berlin (1995) · Zbl 0828.58002 · doi:10.1007/BFb0095978
[38] Seidler, J.: Ergodic behaviour of stochastic parabolic equations. Czechoslov. Math. J. 47(2), 277-316 (1997) · Zbl 0935.60041 · doi:10.1023/A:1022821729545
[39] Tanabe, H.: Equations of Evolution. Pitman, London (1979) · Zbl 0417.35003
[40] Taylor, M.E.: Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations. Commun. Partial Differ. Equ. 17, 1407-1456 (1992) · Zbl 0771.35047 · doi:10.1080/03605309208820892
[41] Temam, R.: Navier-Stokes Equations. North-Holland Publish Company, Amsterdam (1979) · Zbl 0426.35003
[42] Temam, R., Wang, S.: Inertial forms of Navier-Stokes equations on the sphere. J. Funct. Anal. 117, 215-242 (1993) · Zbl 0801.35109 · doi:10.1006/jfan.1993.1126
[43] Temam, R., Ziane, M.: Navier-Stokes equations in thin spherical domains. Contemp. Math. AMS 209, 281-314 (1997) · Zbl 0891.35119 · doi:10.1090/conm/209/02772
[44] Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988) · doi:10.1142/0270
[45] Walecka, J.D.: Introduction to General Relativity. World Scientific, Singapore (2007) · Zbl 1120.83001 · doi:10.1142/6399
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.