×

Low-order parametric state-space modeling of MIMO systems in the Loewner framework. (English) Zbl 1530.93076

Summary: In this work, we present a novel data-driven method for identifying parametric MIMO generalized state-space or descriptor systems of low order that accurately capture the frequency and time domain behavior of large-scale linear dynamical systems. The low-order parametric descriptor systems are identified from transfer matrix samples by means of two-variable Lagrange rational matrix interpolation. This is done within the Loewner framework by deploying the new matrix-valued barycentric formula given in both right and left polynomial matrix fraction forms, which enables the construction of minimal parametric descriptor systems with rectangular transfer matrices. The developed method allows the reduction of order and parameter dependence complexity of the constructed system. Stability of the system is preserved by the postprocessing technique based on flipping signs of unstable poles. The developed methodology is illustrated with a few academic examples and applied to low-order parametric state-space identification of an aerodynamic system.

MSC:

93B30 System identification
93C35 Multivariable systems, multidimensional control systems
93A15 Large-scale systems
93B11 System structure simplification

Software:

RKToolbox; DASSL; Loewner; AAA
Full Text: DOI

References:

[1] Anderson, B. D. O. and Antoulas, A. C., Rational interpolation and state-variable realizations, Linear Algebra Appl., 137 (1990), pp. 479-509, doi:10.1016/0024-3795(90)90140-8. · Zbl 0715.93019
[2] Antoulas, A. C. and Anderson, B. D. Q., On the scalar rational interpolation problem, IMA J. Math. Control, 3 (1986), pp. 61-88, doi:10.1093/imamci/3.2-3.61. · Zbl 0637.93014
[3] Antoulas, A. C., Ball, J., Kang, J., and Willems, J., On the solution of the minimal rational interpolation problem, Linear Algebra Appl., 137 (1990), pp. 511-573, doi:10.1016/0024-3795(90)90141-X. · Zbl 0715.93020
[4] Antoulas, A. C., Ionita, A. C., and Lefteriu, S., On two-variable rational interpolation, Linear Algebra Appl., 436 (2012), pp. 2889-2915, doi:10.1016/j.laa.2011.07.017. · Zbl 1238.41001
[5] Berljafa, M. and Güttel, S., The RKFIT algorithm for nonlinear rational approximation, SIAM J. Sci. Comput., 39 (2017), pp. A2049-A2071, doi:10.1137/15M1025426. · Zbl 1373.65037
[6] Berrut, J.-P. and Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Rev., 46 (2004), pp. 501-517, doi:10.1137/S0036144502417715. · Zbl 1061.65006
[7] Bradde, T., Grivet-Talocia, S., Zanco, A., and Calafiore, G. C., Data-driven extraction of uniformly stable and passive parameterized macromodels, IEEE Access, 10 (2022), pp. 15786-15804, doi:10.1109/ACCESS.2022.3147034.
[8] Carrera-Retana, L. E., Marin-Sanchez, M., Schuster, C., and Rimolo-Donadio, R., Improving accuracy after stability enforcement in the Loewner matrix framework, IEEE Trans. Microw. Theory Tech., 70 (2021), pp. 1037-1047, doi:10.1109/TMTT.2021.3136234.
[9] Deschrijver, D., Dhaene, T., and De Zutter, D., Robust parametric macromodeling using multivariate orthonormal vector fitting, IEEE Trans. Microw. Theory Tech., 56 (2008), pp. 1661-1667, doi:10.1109/TMTT.2008.924346.
[10] Elsworth, S. and Güttel, S., Conversions between barycentric, RKFUN, and Newton representations of rational interpolants, Linear Algebra Appl., 576 (2019), pp. 246-257, doi:10.1016/j.laa.2018.10.003. · Zbl 1429.65075
[11] Gosea, I. V. and Antoulas, A. C., Stability preserving post-processing methods applied in the Loewner framework, in 2016 IEEE 20th Workshop on Signal and Power Integrity (SPI), , IEEE, 2016, pp. 1-4, doi:10.1109/SAPIW.2016.7496283.
[12] Gosea, I. V. and Güttel, S., Algorithms for the rational approximation of matrix-valued functions, SIAM J. Sci. Comput., 43 (2021), pp. A3033-A3054, doi:10.1137/20M1324727. · Zbl 1530.41011
[13] Grivet-Talocia, S. and Fevola, E., Compact parameterized black-box modeling via Fourier-rational approximations, IEEE Trans. Electromagn. Compat., 59 (2017), pp. 1133-1142, doi:10.1109/TEMC.2017.2649100.
[14] Gustavsen, B. and Semlyen, A., Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Delivery, 14 (1999), pp. 1052-1061, doi:10.1109/61.772353.
[15] Hochman, A., FastAAA: A fast rational-function fitter, in 2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), , IEEE, 2017, pp. 1-3, doi:10.1109/EPEPS.2017.8329756.
[16] Ionita, A. C., Lagrange Rational Interpolation and Its Applications to Approximation of Large-Scale Dynamical Systems, Ph.D. thesis, Rice University, 2013.
[17] Ionita, A. C. and Antoulas, A. C., Data-driven parametrized model reduction in the Loewner framework, SIAM J. Sci. Comput., 36 (2014), pp. A984-A1007, doi:10.1137/130914619. · Zbl 1297.65072
[18] Kabir, M. and Khazaka, R., Macromodeling of distributed networks from frequency-domain data using the Loewner matrix mpproach, IEEE Trans. Microw. Theory Tech., 60 (2012), pp. 3927-3938, doi:10.1109/TMTT.2012.2222915.
[19] Kabir, M. and Khazaka, R., Parametric macromodeling of high-speed modules from frequency-domain data using Loewner matrix based method, in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), , IEEE, 2013, pp. 1-4, doi:10.1109/MWSYM.2013.6697352.
[20] Knockaert, L., A simple and accurate algorithm for barycentric rational interpolation, IEEE Signal Process. Lett., 15 (2008), pp. 154-157, doi:10.1109/LSP.2007.913583.
[21] Köhler, M., On the closest stable descriptor system in the respective spaces \(RH_2\) and \(RH_{\infty }\), Linear Algebra Appl., 443 (2014), pp. 34-49, doi:10.1016/j.laa.2013.11.012. · Zbl 1282.15013
[22] Lefteriu, S. and Antoulas, A. C., A new approach to modeling multiport systems from frequency-domain data, IEEE Trans. Comput.-Aided. Des. Integr. Circuits Syst., 29 (2010), pp. 14-27, doi:10.1109/TCAD.2009.2034500.
[23] Lefteriu, S., Antoulas, A. C., and Ionita, A. C., Parametric model reduction in the Loewner framework, IFAC Proc. Vol.,44 (2011), pp. 12751-12756, doi:10.3182/20110828-6-IT-1002.02651.
[24] Lietaert, P., Meerbergen, K., Pérez, J., and Vandereycken, B., Automatic rational approximation and linearization of nonlinear eigenvalue problems, IMA J. Numer. Anal., 42 (2022), pp. 1087-1115, doi:10.1093/IMANUM/DRAA098. · Zbl 1514.65063
[25] Mayo, A. J. and Antoulas, A. C., A framework for the solution of the generalized realization problem, Linear Algebra Appl., 425 (2007), pp. 634-662, doi:10.1016/j.laa.2007.03.008. · Zbl 1118.93029
[26] Mlinarić, P. and Gugercin, S., A Unifying Framework for Interpolatory \(\mathcal{L}_2\)-Optimal Reduced-Order Modeling, preprint, arXiv:2209.00714, 2022. · Zbl 1523.30048
[27] Mlinarić, P. and Gugercin, S., \( \mathcal{L}_2\)-Optimal Reduced-Order Modeling Using Parameter-Separable Forms, preprint, arXiv:2206.02929, 2022. · Zbl 1512.65098
[28] Nakatsukasa, Y., Sète, O., and Trefethen, L. N., The AAA algorithm for rational approximation, SIAM J. Sci. Comput., 40 (2018), pp. A1494-A1522, doi:10.1137/16M1106122. · Zbl 1390.41015
[29] Petzold, L. R., Description of DASSL: A Differential/Algebraic System Solver, Technical report, Sandia National Labs, Livermore, CA, 1982.
[30] Roberts, A., Differential Algebraic Equation Solvers, 1998, https://www.mathworks.com/matlabcentral/fileexchange/28-differential-algebraic-equation-solvers.
[31] Rodriguez, L. Balicki, A. C., and Gugercin, S., The p-AAA Algorithm for Data Driven Modeling of Parametric Dynamical Systems, preprint, arXiv:2003.06536, 2022. · Zbl 1528.93001
[32] Simard, J. D. and Astolfi, A., Nonlinear model reduction in the Loewner framework, IEEE Trans. Automat. Control, 66 (2021), pp. 5711-5726, doi:10.1109/TAC.2021.3110809. · Zbl 1536.93115
[33] Stykel, T., Gramian-based model reduction for descriptor systems, Math. Control Signals Systems, 16 (2004), pp. 297-319, doi:10.1007/s00498-004-0141-4. · Zbl 1067.93011
[34] Triverio, P., Grivet-Talocia, S., Bandinu, M., and Canavero, F. G., Geometrically parameterized circuit models of printed circuit board traces inclusive of antenna coupling, IEEE Trans. Electromagn. Compat., 52 (2010), pp. 471-478, doi:10.1109/TEMC.2010.2043256.
[35] Triverio, P., Grivet-Talocia, S., and Nakhla, M. S., An improved fitting algorithm for parametric macromodeling from tabulated data, in 2008 12th IEEE Workshop on Signal Propagation on Interconnects, , IEEE, 2008, pp. 1-4, doi:10.1109/SPI.2008.4558379.
[36] Triverio, P., Nakhla, M., and Grivet-Talocia, S., Parametric macromodeling of multiport networks from tabulated data, in 2007 IEEE Electrical Performance of Electronic Packaging, IEEE, 2007, pp. 51-54, doi:10.1109/EPEP.2007.4387121.
[37] Verghese, G., Lévy, B., and Kailath, T., A generalized state-space for singular systems, IEEE Trans. Automat. Control, 26 (1981), pp. 811-831, doi:10.1109/TAC.1981.1102763. · Zbl 0541.34040
[38] Vojković, T., Vuillemin, P., Quero, D., and Poussot-Vassal, C., Parametric reduced-order modeling of aeroelastic systems, IFAC-PapersOnLine, 55 (2022), pp. 151-156, doi:10.1016/j.ifacol.2022.09.087.
[39] Wang, Y., Lei, C.-U., Pang, G. K., and Wong, N., MFTI: Matrix-format tangential interpolation for modeling multi-port systems, in Proceedings of the 47th Design Automation Conference, , ACM, 2010, pp. 683-686, doi:10.1145/1837274.1837447.
[40] Yue, Y., Feng, L., and Benner, P., Reduced-order modelling of parametric systems via interpolation of heterogeneous surrogates, Adv. Model. Simul. Eng. Sci., 6 (2019), 10, doi:10.1186/s40323-019-0134-y.
[41] Zanco, A. and Grivet-Talocia, S., High-dimensional parameterized macromodeling with guaranteed stability, in 2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), , IEEE, 2019, pp. 1-3, doi:10.1109/EPEPS47316.2019.193203.
[42] Zanco, A. and Grivet-Talocia, S., Toward fully automated high-dimensional parameterized macromodeling, IEEE Trans. Compon. Packag. Manuf. Technol., 11 (2021), pp. 1402-1416, doi:10.1109/TCPMT.2021.3099958.
[43] Zanco, A., Grivet-Talocia, S., Bradde, T., and De Stefano, M., Enforcing passivity of parameterized LTI macromodels via Hamiltonian-driven multivariate adaptive sampling, IEEE Trans. Comput.-Aided. Des. Integr. Circuits Syst., 39 (2020), pp. 225-238, doi:10.1109/TCAD.2018.2883962.
[44] Zanco, A., Grivet-Talocia, S., Bradde, T., and De Stefano, M., Uniformly stable parameterized macromodeling through positive definite basis functions, IEEE Trans. Compon. Packag. Manuf. Technol., 10 (2020), pp. 1782-1794, doi:10.1109/TCPMT.2020.3012275.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.