×

On two-variable rational interpolation. (English) Zbl 1238.41001

Summary: The goal of this contribution is to investigate interpolation of two-variable rational functions. The tool is the two-variable Loewner matrix, which is an extension of its single-variable counterpart. The main property of the Loewner matrix is that its rank encodes the information concerning minimal complexity interpolants. Both polynomial and generalized state-space (descriptor) realizations of interpolants are presented. Examples illustrate how two-variable rational functions can be recovered from appropriate measurements.

MSC:

41A05 Interpolation in approximation theory
Full Text: DOI

References:

[1] Anderson, B. D.O.; Antoulas, A. C., Rational interpolation and state-variable realizations, Linear Algebra Appl., 137/138, 479-509 (1990) · Zbl 0715.93019
[2] Antoulas, A. C., Approximation of large-scale dynamical systems, (Advances in Design and Control, vol. 6 (2005), SIAM: SIAM Philadelphia), reprinted (2008) · Zbl 1159.93318
[3] Antoulas, A. C.; Anderson, B. D.O., On the scalar rational interpolation problem, IMA J. Math. Control Inform., 3, 61-88 (1986) · Zbl 0637.93014
[4] Antoulas, A. C.; Anderson, B. D.O., State-space and polynomial approaches to rational interpolation, (Kaashoek, M. A.; van Schuppen, J. H.; Ran, A. C.M., Realization and Modelling in System Theory (1990), Birkhäuser: Birkhäuser Boston), 73-82 · Zbl 0726.93015
[5] Belevitch, V., Interpolation matrices, Philips Res. Rep., 25, 337-369 (1970) · Zbl 0253.41002
[6] Berrut, J.-P.; Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Rev., 46, 501-517 (2004) · Zbl 1061.65006
[7] Donoghue, W. F., Monotone Matrix Functions and Analytic Continuation (1974), Springer: Springer New York · Zbl 0278.30004
[8] Eising, R., Realization and stabilization of 2-D systems, IEEE Trans. Automat. Control, AC-23, 793-799 (1978) · Zbl 0397.93022
[9] Fiedler, M., Hankel and Löwner matrices, Linear Algebra Appl., 58, 75-96 (1984) · Zbl 0542.15009
[10] Chen, Gong-ning; Zhang, Hui-pin, More on Loewner matrices, Linear Algebra Appl., 203-204, 265-300 (1994) · Zbl 0814.15012
[11] Gu, G.; Aravena, L.; Zhou, K., On minimal realizations in 2-D systems, IEEE Trans. Automat. Control, AC-38, 1228-1233 (1991)
[12] Kaczorek, T., Canonical forms of singular 1D and 2D linear systems, Int. J. Appl. Math. Comput. Sci., 13, 61-72 (2003) · Zbl 1051.93021
[13] Knockaert, L., A simple and accurate algorithm for barycentric rational interpolation, IEEE Signal Proc. Lett., 15, 154-157 (2008)
[14] Kung, S.-Y.; Levy, B. C.; Morf, M.; Kailath, T., New results in 2-D systems theory. Part II: 2-D state-space models-realization and the notions of controllability, observability and minimality, Proc. IEEE, 65, 945-961 (1977)
[15] Lefteriu, S.; Antoulas, A. C., A new approach to modeling multiport systems from frequency-domain data, IEEE Trans. CAD Integrated Circuits Systems, 29, 14-27 (2010)
[16] Lefteriu, S.; Antoulas, A. C., Topics in model order reduction with applications to circuit simulation, (Hinze, M.; Benner, P.; ter Maten, J. W., Model Reduction for Circuit Simulation. Model Reduction for Circuit Simulation, Lecture Notes in Electrical Engineering (LNEE), vol. 74 (2011), Springer), 81-104
[17] Lefteriu, S.; Antoulas, A. C., A new adaptive approach to multi-port scattering parameters, (Roos, J.; Costa, L. R.J., Scientific Computing in Electrical Engineering. Scientific Computing in Electrical Engineering, Mathematics in Industry, vol. 14 (2010), Springer-Verlag), 21-28
[18] Löwner, K., Über monotone Matrixfunktionen, Math. Z., 38, 177-216 (1934) · JFM 60.0055.01
[19] Mayo, A. J.; Antoulas, A. C., A framework for the solution of the generalized realization problem, Linear Algebra Appl., 425, 634-662 (2007) · Zbl 1118.93029
[20] Ntogramatzidis, L.; Cantoni, M.; Yang, R., On the partial realization of non-causal 2-D linear systems, IEEE Trans. Circuit Theory-I, 54, 1800-1808 (2007) · Zbl 1374.93085
[21] Olver, P. J., On multivariate interpolation, Stud. Appl. Math., 116, 201-240 (2006) · Zbl 1145.41311
[22] Pták, V.; Vavrin, Z., Bézout, Hankel, and Loewner matrices, Linear Algebra Appl., 184, 13-36 (1993) · Zbl 0774.15016
[23] Stykel, T., Gramian based model reduction for descriptor systems, Math. Control Signals Systems, 16, 297-319 (2004) · Zbl 1067.93011
[24] Triverio, P.; Grivet-Talocia, S.; Nakhla, M. S., A parametrized macromodeling strategy with uniform stability test, IEEE Trans. Adv. Packaging, 32, 205-215 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.