×

A finite volume approach for the simulation of nonlinear dissipative acoustic wave propagation. (English) Zbl 1467.76036

Summary: A form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional finite volume method using the Roe linearization was implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a High Intensity Focused Ultrasound (HIFU) system, both with satisfactory results. The code, available under an open source license, is written for parallel execution on a Graphics Processing Unit (GPU), thus improving performance by a factor of over 60 when compared to the standard serial execution finite volume code CLAWPACK 4.6.1, which has been used as reference for the implementation logic as well.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics

References:

[1] Westervelt, P. J., Parametric acoustic array, J. Acoust. Soc. Am., 35, 535 (1963)
[2] Hamilton, M. F.; Morfey, C. L., Model equations, (Nonlinear Acoustics (1998), Academic press: Academic press San Diego), (Ch. 3)
[3] Crighton, D. G.; Scott, J. F., Asymptotic solutions of model equations in nonlinear acoustics, Phil. Trans. R. Soc. A, 292, 1389, 101-134 (1979) · Zbl 0412.76054
[4] Blackstock, D. T., Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude, J. Acoust. Soc. Am., 39, 1019 (1966) · Zbl 0148.23204
[5] Jordan, P. M., An analytical study of Kuznetsov’s equation: diffusive solitons, shock formation, and solution bifurcation, Phys. Lett. A, 326, 1, 77-84 (2004) · Zbl 1161.35475
[6] Yang, H. Q.; Przekwas, A. J., A comparative study of advanced shock-capturing shcemes applied to Burgers’ equation, J. Comput. Phys., 102, 1, 139-159 (1992) · Zbl 0759.76053
[7] Duck, F. A., Nonlinear acoustics in diagnostic ultrasound, Ultrasound Med. Biol., 28, 1, 1-18 (2002)
[8] Khokhlova, V. A.; Souchon, R.; Tavakkoli, J.; Sapozhnikov, O. A.; Cathignol, D., Numerical modeling of finite-amplitude sound beams: Shock formation in the near field of a cw plane piston source, J. Acoust. Soc. Am., 110, 95 (2001)
[9] Yuldashev, P. V.; Khokhlova, V. A., Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays, Acoust. Phys., 57, 3, 334-343 (2011)
[10] Dagrau, F.; Rénier, M.; Marchiano, R.; Coulouvrat, F., Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation, J. Acoust. Soc. Am., 130, 20 (2011)
[11] Varray, F.; Ramalli, A.; Cachard, C.; Tortoli, P.; Basset, O., Fundamental and second-harmonic ultrasound field computation of inhomogeneous nonlinear medium with a generalized angular spectrum method, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 58, 7, 1366-1376 (2011)
[12] Varslot, T.; Taraldsen, G., Computer simulation of forward wave propagation in soft tissue, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 52, 9, 1473-1482 (2005)
[13] Fagnan, K.; LeVeque, R. J.; Matula, T. J.; MacConaghy, B., High-resolution finite volume methods for extracorporeal shock wave therapy, (Hyperbolic Problems: Theory, Numerics, Applications (2008), Springer: Springer New York), 503-510
[14] Okita, K.; Ono, K.; Takagi, S.; Matsumoto, Y., Development of high intensity focused ultrasound simulator for large-scale computing, Int. J. Numer. Methods Fluids, 65, 1-3, 43-66 (2011) · Zbl 1427.92048
[15] Huijssen, J.; Verweij, M. D., An iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers, J. Acoust. Soc. Am., 127, 33 (2010)
[16] Christopher, P. T.; Parker, K. J., New approaches to nonlinear diffractive field propagation, J. Acoust. Soc. Am., 90, 488 (1991)
[17] Albin, N.; Bruno, O. P.; Cheung, T. Y.; Cleveland, R. O., Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams, J. Acoust. Soc. Am., 132, 2371 (2012)
[18] Demi, L.; Van Dongen, K. W.A.; Verweij, M. D., A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation, J. Acoust. Soc. Am., 129, 1221 (2011)
[19] Karamalis, A.; Wein, W.; Navab, N., Fast ultrasound image simulation using the Westervelt equation, (Medical Image Computing and Computer-Assisted Intervention-MICCAI 2010 (2010), Springer: Springer New York), 243-250
[20] Hallaj, I. M.; Cleveland, R. O., FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound, J. Acoust. Soc. Am., 105, L7 (1999)
[21] Pinton, G.; Dahl, J.; Rosenzweig, S.; Trahey, G., A heterogeneous nonlinear attenuating full-wave model of ultrasound, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 56, 3, 474-488 (2009)
[22] Jing, Y.; Wang, T.; Clement, G. T., A k-space method for moderately nonlinear wave propagation, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 59, 8, 1664-1673 (2012)
[23] Lemoine, G. I.; Ou, M. Y.; LeVeque, R. J., High-resolution finite volume modeling of wave propagation in orthotropic poroelastic media, SIAM J. Sci. Comput., 35, 1, B176-B206 (2013) · Zbl 1342.74173
[24] Clason, C.; Kaltenbacher, B.; Veljović, S., Boundary optimal control of the Westervelt and the Kuznetsov equations, J. Math. Anal. Appl., 356, 2, 738-751 (2009) · Zbl 1163.49026
[25] Varray, F.; Cachard, C.; Ramalli, A.; Tortoli, P.; Basset, O., Simulation of ultrasound nonlinear propagation on GPU using a generalized angular spectrum method, EURASIP J. Image Video Process, 2011, 1, 1-6 (2011)
[27] Varslot, T.; Måsøy, S.-E., Forward propagation of acoustic pressure pulses in 3D soft biological tissue, Model. Ident. Control, 27, 3, 181-200 (2006)
[30] Beyer, R. T., The parameter B/A, (Nonlinear Acoustics (1998), Academic press: Academic press San Diego), (Ch. 2)
[31] Lighthill, M. J., Viscosity effects in sound waves of finite amplitude, (Surveys in Mechanics (1956), Cambridge University Press: Cambridge University Press Cambdridge), 250-351
[32] Beyer, R. T., Nonlinear Acoustics (1997), Acoustical Society of America: Acoustical Society of America New York
[33] Callen, H. B., Thermodynamics and an Introduction to Thermostatistics (1985), Wiley & Sons: Wiley & Sons New York · Zbl 0989.80500
[34] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, vol. 31 (2002), Cambridge university press: Cambridge university press Cambridge · Zbl 1010.65040
[35] Sharma, V. D., Quasilinear Hyperbolic Systems, Compressible Flows, and Waves (2010), Chemical Rubber Company Press: Chemical Rubber Company Press Boca Raton · Zbl 1200.76002
[36] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372 (1981) · Zbl 0474.65066
[37] Laney, C. B., Computational Gasdynamics (1998), Cambridge University Press · Zbl 0947.76001
[38] Rendón, P. L.; Orduña-Bustamante, F.; Narezo, D.; Pérez-López, A.; Sorrentini, J., Nonlinear progressive waves in a slide trombone resonator, J. Acoust. Soc. Am., 127, 1096 (2010)
[39] Frijlink, M. E.; Kaupang, H.; Varslot, T.; Måsøy, S.-E., Abersim: a simulation program for 3D nonlinear acoustic wave propagation for arbitrary pulses and arbitrary transducer geometries, (Ultrasonics Symposium, 2008. IUS 2008. (2008), IEEE: IEEE Beijing), 1282-1285
[40] Anderson, M. E., A 2D nonlinear wave propagation solver written in open-source matlab code, (Ultrasonics Symposium, 2000 IEEE, vol. 2 (2000), IEEE: IEEE San Juan, Puerto Rico), 1351-1354
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.