×

Boundary optimal control of the Westervelt and the Kuznetsov equations. (English) Zbl 1163.49026

Summary: This paper is concerned with optimal Neumann boundary control for the Westervelt and the Kuznetsov equations, which are equations of nonlinear acoustics. Specifically, functionals of tracking type with applications in noninvasive ultrasonic medical treatments are considered. Existence of optimal controls is established and first order necessary optimality conditions are derived. Stability of the minimizer with respect to perturbations in the data as well as convergence of the controls when the regularization parameter tends to zero is shown.

MSC:

49K20 Optimality conditions for problems involving partial differential equations
35Q53 KdV equations (Korteweg-de Vries equations)
35L05 Wave equation
76Q05 Hydro- and aero-acoustics

References:

[1] T. Dreyer, W. Kraus, E. Bauer, R.E. Riedlinger, Investigations of compact focusing transducers using stacked piezoelectric elements for strong sound pulses in therapy, in: Proceedings of the IEEE Ultrasonics Symposium, 2000, pp. 1239-1242; T. Dreyer, W. Kraus, E. Bauer, R.E. Riedlinger, Investigations of compact focusing transducers using stacked piezoelectric elements for strong sound pulses in therapy, in: Proceedings of the IEEE Ultrasonics Symposium, 2000, pp. 1239-1242
[2] Kaltenbacher, M., Numerical Simulation of Mechatronic Sensors and Actuators (2007), Springer: Springer Berlin · Zbl 1072.78001
[3] Hamilton, M. F.; Blackstock, D. T., Nonlinear Acoustics (1997), Academic Press: Academic Press New York · Zbl 0744.73019
[4] Lesser, M.; Seebass, R., The structure of a weak shock wave undergoing reflexion from a wall, J. Fluid Mech., 31, 501-528 (1968) · Zbl 0155.54503
[5] Kuznetsov, V. P., Equations of nonlinear acoustics, Soviet Phys.—Acoust., 16, 4, 467-470 (1971)
[6] Westervelt, P. J., Parametric acoustic array, J. Acoust. Soc. Amer., 35, 535-537 (1963)
[7] M. Kaltenbacher, H. Landes, J. Hoffelner, R. Simkovics, Use of modern simulation for industrial applications of high power ultrasonics, in: Proceedings of the IEEE Ultrasonics Symposium, CD-ROM Proceedings, 2002, pp. 673-678; M. Kaltenbacher, H. Landes, J. Hoffelner, R. Simkovics, Use of modern simulation for industrial applications of high power ultrasonics, in: Proceedings of the IEEE Ultrasonics Symposium, CD-ROM Proceedings, 2002, pp. 673-678
[8] Slemrod, M., Existence of optimal controls for control systems governed by nonlinear partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 1, 229-246 (1974), (1975) · Zbl 0314.49007
[9] Farahi, M. H.; Rubio, J. E.; Wilson, D. A., The global control of a nonlinear wave equation, Internat. J. Control, 65, 1, 1-15 (1996) · Zbl 0917.49005
[10] Mordukhovich, B. S.; Raymond, J.-P., Optimal boundary control of hyperbolic equations with pointwise state constraints, Nonlinear Anal., 63, 5-7, 823-830 (2005) · Zbl 1153.49315
[11] Lasiecka, I., Mathematical Control Theory of Coupled PDEs, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 75 (2002), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1032.93002
[12] B. Kaltenbacher, I. Lasiecka, S. Veljović, Some well-posedness results in nonlinear acoustics, Tech. Rep. IOC-21, International Doctorate Program Identification, Optimization and Control with Applications in Modern Technologieshttp://www2.am.uni-erlangen.de/elitenetzwerk-optimierung/preprintfiles/IOC21.pdf; B. Kaltenbacher, I. Lasiecka, S. Veljović, Some well-posedness results in nonlinear acoustics, Tech. Rep. IOC-21, International Doctorate Program Identification, Optimization and Control with Applications in Modern Technologieshttp://www2.am.uni-erlangen.de/elitenetzwerk-optimierung/preprintfiles/IOC21.pdf
[13] Edwards, R. E., Functional Analysis. Theory and Applications (1965), Holt, Rinehart and Winston: Holt, Rinehart and Winston New York · Zbl 0182.16101
[14] Bonnans, J. F.; Shapiro, A., Perturbation Analysis of Optimization Problems, Springer Ser. Oper. Res. (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0966.49001
[15] Engl, H. W.; Kunisch, K.; Neubauer, A., Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems, Inverse Problems, 5, 4, 523-540 (1989) · Zbl 0695.65037
[16] Fitzgibbon, W. E., Strongly damped quasilinear evolution equations, J. Math. Anal. Appl., 79, 2, 536-550 (1981) · Zbl 0476.35040
[17] Hofmann, B.; Kaltenbacher, B.; Pöschl, C.; Scherzer, O., A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Problems, 23, 3, 987-1010 (2007) · Zbl 1131.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.