×

On the linearization of Regge calculus. (English) Zbl 1269.83022

Summary: We study the linearization of three dimensional Regge calculus around Euclidean metric. We provide an explicit formula for the corresponding quadratic form and relate it to the curl t curl operator which appears in the quadratic part of the Einstein-Hilbert action and also in the linear elasticity complex. We insert Regge metrics in a discrete version of this complex, equipped with densely defined and commuting interpolators. We show that the eigenpairs of the curl t curl operator, approximated using the quadratic part of the Regge action on Regge metrics, converge to their continuous counterparts, interpreting the computation as a non-conforming finite element method.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C40 Gravitational energy and conservation laws; groups of motions
81T20 Quantum field theory on curved space or space-time backgrounds
83-08 Computational methods for problems pertaining to relativity and gravitational theory
35L15 Initial value problems for second-order hyperbolic equations

References:

[1] Alcubierre, M.: Introduction to 3 + 1 numerical relativity. In: International Series of Monographs on Physics, vol. 140. Oxford University Press, Oxford (2008) · Zbl 1140.83002
[2] Arnold D.N., Awanou G., Winther R.: Finite elements for symmetric tensors in three dimensions. Math. Comput. 77(263), 1229–1251 (2008) · Zbl 1285.74013 · doi:10.1090/S0025-5718-08-02071-1
[3] Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods. II. The elasticity complex. In: Compatible Spatial Discretizations. IMA Vol. Math. Appl., vol. 142, pp. 47–67. Springer, New York (2006) · Zbl 1119.65399
[4] Arnold D.N., Falk R.S., Winther R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006) · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[5] Arnold D.N., Falk R.S., Winther R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. (N.S.) 47(2), 281–354 (2010) · Zbl 1207.65134 · doi:10.1090/S0273-0979-10-01278-4
[6] Babuška I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971) · Zbl 0214.42001 · doi:10.1007/BF02165003
[7] Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, pp. 641–787. North-Holland, Amsterdam (1991) · Zbl 0875.65087
[8] Bahr B., Dittrich B.: Regge calculus from a new angle. New J. Phys. 12(3), 033010 (2010) · Zbl 1360.83016 · doi:10.1088/1367-2630/12/3/033010
[9] Barrett J.W., Galassi M., Miller W.A., Sorkin R.D., Tuckey P.A., Williams R.M.: Parallelizable implicit evolution scheme for Regge calculus. Int. J. Theoret. Phys. 36(4), 815–839 (1997) · Zbl 0871.53067 · doi:10.1007/BF02435787
[10] Barrett J.W., Williams R.M.: The convergence of lattice solutions of linearised Regge calculus. Class. Quantum Gravity 5(12), 1543–1556 (1988) · doi:10.1088/0264-9381/5/12/007
[11] Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity, Solving Einstein’s Equations on the Computer. Cambridge University Press (2010) · Zbl 1198.83001
[12] Boffi D., Brezzi F., Gastaldi L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69(229), 121–140 (2000) · Zbl 0938.65126
[13] Boffi D., Fernandes P., Gastaldi L., Perugia I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36(4), 1264–1290 (1999) · Zbl 1025.78014 · doi:10.1137/S003614299731853X
[14] Bossavit, A.: Mixed finite elements and the complex of Whitney forms. In: The Mathematics of Finite Elements and Applications, VI (Uxbridge, 1987), pp. 137–144. Academic Press, London (1988)
[15] Brewin, L.C.: Fast algorithms for computing defects and their derivatives in the Regge calculus. Preprint. arxiv:1011.1885:1–38 (2010)
[16] Brewin L.C., Gentle A.P.: On the convergence of Regge calculus to general relativity. Class. Quantum Gravity 18(3), 517–525 (2001) · Zbl 0971.83018 · doi:10.1088/0264-9381/18/3/311
[17] Brezzi F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R2), 129–151 (1974)
[18] Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991) · Zbl 0788.73002
[19] Buffa A., Perugia I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44(5), 2198–2226 (2006) · Zbl 1344.65110 · doi:10.1137/050636887
[20] Caorsi S., Fernandes P., Raffetto M.: Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. Math. Model. Numer. Anal. 35(2), 331–354 (2001) · Zbl 0993.78016 · doi:10.1051/m2an:2001118
[21] Chatelin, F.: Spectral approximation of linear operators. Computer Science and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1983). With a foreword by P. Henrici, With solutions to exercises by Mario Ahués · Zbl 0517.65036
[22] Cheeger J., Müller W., Schrader R.: On the curvature of piecewise flat spaces. Commun. Math. Phys. 92(3), 405–454 (1984) · Zbl 0559.53028 · doi:10.1007/BF01210729
[23] Christiansen S.H.: A characterization of second-order differential operators on finite element spaces. Math. Models Methods Appl. Sci. 14(12), 1881–1892 (2004) · Zbl 1076.83008 · doi:10.1142/S0218202504003854
[24] Christiansen S.H.: Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension. Numer. Math. 107(1), 87–106 (2007) · Zbl 1127.65085 · doi:10.1007/s00211-007-0081-2
[25] Christiansen S.H., Halvorsen T.G.: Convergence of lattice gauge theory for Maxwell’s equations. BIT 49(4), 645–667 (2009) · Zbl 1184.78079 · doi:10.1007/s10543-009-0242-z
[26] Christiansen, S.H., Winther, R.: On variational eigenvalue approximation of semidefinite operators. Preprint. arXiv:1005.2059v4 (2010) · Zbl 1269.65121
[27] Ciarlet, P.G., Lions, J.-L. (eds.): Handbook of numerical analysis. Handbook of Numerical Analysis, vol. II. Finite Element Methods, Part 1. North-Holland, Amsterdam (1991) · Zbl 0712.65091
[28] Ciarlet P.G., Ciarlet P. Jr: Direct computation of stresses in planar linearized elasticity. Math. Models Methods Appl. Sci. 19(7), 1043–1064 (2009) · Zbl 1169.49035 · doi:10.1142/S0218202509003711
[29] Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. Preprint. arXiv:math/0508341v2:1–53 (2005)
[30] Frauendiener J.: Discrete differential forms in general relativity. Class. Quantum Gravity 23(16), S369–S385 (2006) · Zbl 1191.83018 · doi:10.1088/0264-9381/23/16/S05
[31] Friedberg R., Lee T.D.: Derivation of Regge’s action from Einstein’s theory of general relativity. Nuclear Phys. B 242(1), 145–166 (1984) · doi:10.1016/0550-3213(84)90137-8
[32] Gentle A.P.: Regge calculus: a unique tool for numerical relativity. Gen. Relativ. Gravit. 34(10), 1701–1718 (2002) · Zbl 1019.83006 · doi:10.1023/A:1020128425143
[33] Gentle A.P., Miller W.A.: A fully (3 + 1)-dimensional Regge calculus model of the Kasner cosmology. Class. Quantum Gravity 15(2), 389–405 (1998) · Zbl 0909.53058 · doi:10.1088/0264-9381/15/2/013
[34] Geymonat G., Krasucki F.: Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains. Commun. Pure Appl. Anal. 8(1), 295–309 (2009) · Zbl 1156.58004
[35] Grandclément, P., Novak, J.: Spectral methods for numerical relativity. Living Rev. Relativ. 12(1) (2009) · Zbl 1166.83004
[36] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Springer Series in Computational Mathematics, vol. 31, 2nd edn. Springer, Berlin (2006). Structure-preserving algorithms for ordinary differential equations · Zbl 1094.65125
[37] Hauret P., Kuhl E., Ortiz M.: Diamond elements: a finite element/discrete-mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity. Int. J. Numer. Methods Eng. 72(3), 253–294 (2007) · Zbl 1194.74406 · doi:10.1002/nme.1992
[38] Hiptmair R.: Canonical construction of finite elements. Math. Comput. 68(228), 1325–1346 (1999) · Zbl 0938.65132 · doi:10.1090/S0025-5718-99-01166-7
[39] Holst, M., Stern, A.: Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. Preprint. arXiv:1005.4455v1 (2010)
[40] Kikuchi F.: On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(3), 479–490 (1989) · Zbl 0698.65067
[41] Marsden J.E., West M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001) · Zbl 1123.37327 · doi:10.1017/S096249290100006X
[42] McDonald J.R., Miller W.A.: A geometric construction of the Riemann scalar curvature in Regge calculus. Class. Quantum Gravity 25(19), 195017 (2008) · Zbl 1151.83317 · doi:10.1088/0264-9381/25/19/195017
[43] Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W. H. Freeman and Co., San Francisco (1973)
[44] Nédélec J.-C.: Mixed finite elements in R 3. Numer. Math. 35(3), 315–341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[45] Peuker, F.: Regge calculus and the finite element method. PhD thesis, Friedrich Schiller Universität Jena (2009)
[46] Porter J.: A new approach to the Regge calculus. I. Formalism. Class. Quantum Gravity 4(2), 375–389 (1987) · Zbl 0609.53034 · doi:10.1088/0264-9381/4/2/017
[47] Porter J.: A new approach to the Regge calculus. II. Application to spherically symmetric vacuum spacetimes. Class. Quantum Gravity 4(2), 391–410 (1987) · Zbl 0609.53035 · doi:10.1088/0264-9381/4/2/018
[48] Pretorius F.: Simulation of binary black hole spacetimes with a harmonic evolution scheme. Class. Quantum Gravity 23(16), S529–S552 (2006) · Zbl 1191.83026 · doi:10.1088/0264-9381/23/16/S13
[49] Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315. Lecture Notes in Math., vol. 606. Springer, Berlin (1977)
[50] Regge T.: General relativity without coordinates. Nuovo Cimento (10) 19, 558–571 (1961) · doi:10.1007/BF02733251
[51] Regge T., Williams R.M.: Discrete structures in gravity. J. Math. Phys. 41(6), 3964–3984 (2000) · Zbl 0984.83016 · doi:10.1063/1.533333
[52] Reula O.A.: Strongly hyperbolic systems in general relativity. J. Hyperbolic Differ. Equ. 1(2), 251–269 (2004) · Zbl 1074.58014 · doi:10.1142/S0219891604000111
[53] Richter R., Frauendiener J.: Discrete differential forms for (1 + 1)-dimensional cosmological space-times. SIAM J. Sci. Comput. 32(3), 1140–1158 (2010) · Zbl 1215.83014 · doi:10.1137/080734583
[54] Richter, R., Lubich, C.: Free and constrained symplectic integrators for numerical general relativity. Class. Quantum Gravity 25(22), 225018, 21 (2008) · Zbl 1152.83309
[55] Roberts, J.E., Thomas, J.-M.: Mixed and hybrid methods. In: Handbook of Numerical Analysis, vol. II, pp. 523–639. North-Holland, Amsterdam (1991) · Zbl 0875.65090
[56] Rothe, H.J.: An introduction: Lattice gauge theories. In: World Scientific Lecture Notes in Physics, vol. 74, 3rd edn. World Scientific, Hackensack (2005) · Zbl 1087.81004
[57] Sathyaprakash, B.S., Schutz, B.F.: Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 12(2) (2009) · Zbl 1166.85002
[58] Schöberl J.: A posteriori error estimates for Maxwell equations. Math. Comput. 77(262), 633–649 (2008) · Zbl 1136.78016
[59] Schöberl, J., Sinwel, A.: Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Ricam Report 10 (2007)
[60] Stern, A.: Geometric discretization of Lagrangian mechanics and field theories. PhD thesis, California Institute of Technology (2009)
[61] Hooft G. t’: Introduction to General Relativity. Rindon Press, Princeton (2001) · Zbl 1008.83001
[62] Wald R.M.: General Relativity. University of Chicago Press, Chicago (1984)
[63] Weil A.: Sur les théorèmes de de Rham. Comment. Math. Helv. 26, 119–145 (1952) · Zbl 0047.16702 · doi:10.1007/BF02564296
[64] Whitney H.: Geometric Integration Theory. Princeton University Press, Princeton (1957) · Zbl 0083.28204
[65] Zumbusch, G.: Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime. Class. Quantum Gravity 26(17), 175011, 15 (2009) · Zbl 1176.83005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.