×

Complex actions and causality violations: applications to Lorentzian quantum cosmology. (English) Zbl 1522.83055

Summary: For the construction of the Lorentzian path integral for gravity one faces two main questions: firstly, what configurations to include, in particular whether to allow Lorentzian metrics that violate causality conditions. And secondly, how to evaluate a highly oscillatory path integral over unbounded domains. Relying on Picard-Lefschetz theory to address the second question for discrete Regge gravity, we will illustrate that it can also answer the first question. To this end we will define the Regge action for complexified variables and study its analytical continuation. Although there have been previously two different versions defined for the Lorentzian Regge action, we will show that the complex action is unique. More precisely, starting from the different definitions for the action one arrives at equivalent analytical extensions. The difference between the two Lorentzian versions is only realized along branch cuts which arise for a certain class of causality violating configurations. As an application we discuss the path integral describing a finite evolution step of the discretized de Sitter Universe. We will in particular consider an evolution from vanishing to finite scale factor, for which the path integral defines the no-boundary wave function.

MSC:

83C45 Quantization of the gravitational field
22E43 Structure and representation of the Lorentz group
83F05 Relativistic cosmology
46T12 Measure (Gaussian, cylindrical, etc.) and integrals (Feynman, path, Fresnel, etc.) on manifolds
62D20 Causal inference from observational studies
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
39A12 Discrete version of topics in analysis

References:

[1] Witten, E.; Witten, E., Analytic continuation of Chern-Simons theory. A new look at the path integral of quantum mechanics, AMS/IP Stud. Adv. Math., 50, 347-446 (2010)
[2] Tanizaki, Y.; Koike, T., Real-time Feynman path integral with Picard-Lefschetz theory and its applications to quantum tunneling, Ann. Phys., NY, 351, 250-74 (2014) · Zbl 1360.81230 · doi:10.1016/j.aop.2014.09.003
[3] Cristoforetti, M.; Di Renzo, F.; Scorzato, L.; (AuroraScience Collaboration); Bongiovanni, L.; Alexandru, A.; Basar, G.; Bedaque, P. F.; Warrington, N. C.; Fujisawa, G.; Nishimura, J.; Sakai, K.; Yosprakob, A., New approach to the sign problem in quantum field theories: high density QCD on a Lefschetz thimble. Numerical methods for the sign problem in lattice field theory. Complex paths around the sign problem. Backpropagating hybrid Monte Carlo algorithm for fast Lefschetz thimble calculations, Phys. Rev. D, 86 (2021) · doi:10.1103/PhysRevD.86.074506
[4] Lefschetz, S.; Vassiliev, V. A., Applications of Algebraic Topology: Graphs and Networks, the Picard-Lefschetz Theory and Feynman Integrals (Applied Mathematical Sciences vol 16). Applied Picard-Lefschetz Theory (Mathematical Surveys and Monographs vol 97) (2002), Berlin: Springer, Berlin: Berlin: Springer, Berlin, Providence, RI: American Mathematical Society, Berlin: Springer, Berlin: Berlin: Springer, Berlin, Providence, RI
[5] Han, M.; Huang, Z.; Liu, H.; Qu, D.; Wan, Y., Spinfoam on a Lefschetz thimble: Markov chain Monte Carlo computation of a Lorentzian spinfoam propagator, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.084026
[6] Ambjorn, J.; Loll, R.; Ambjorn, J.; Jurkiewicz, J.; Loll, R.; Ambjorn, J.; Jurkiewicz, J.; Loll, R., Nonperturbative Lorentzian quantum gravity, causality and topology change. A nonperturbative Lorentzian path integral for gravity. Dynamically triangulating Lorentzian quantum gravity, Nucl. Phys. B. Phys. Rev. Lett.. Nucl. Phys. B, 610, 347-82 (2001) · Zbl 0971.83022 · doi:10.1016/S0550-3213(01)00297-8
[7] Feldbrugge, J.; Lehners, J. L.; Turok, N.; Di Tucci, A.; Lehners, J. L.; Sberna, L., Lorentzian quantum cosmology. No-boundary prescriptions in Lorentzian quantum cosmology, Phys. Rev. D. Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.123543
[8] Freidel, L.; Krasnov, K.; Engle, J.; Livine, E.; Pereira, R.; Rovelli, C., A new spin foam model for 4D gravity. LQG vertex with finite Immirzi parameter, Class. Quantum Grav.. Nucl. Phys. B, 799, 136 (2008) · Zbl 1292.83023 · doi:10.1016/j.nuclphysb.2008.02.018
[9] Perez, A., The spin foam approach to quantum gravity, Living Rev. Relativ., 16, 3 (2013) · Zbl 1320.83008 · doi:10.12942/lrr-2013-3
[10] Asante, S. K.; Dittrich, B.; Padua-Argüelles, J., Effective spin foam models for Lorentzian quantum gravity, Class. Quantum Grav., 38 (2021) · Zbl 1510.83024 · doi:10.1088/1361-6382/ac1b44
[11] Jia, D., Complex, Lorentzian, and Euclidean simplicial quantum gravity: numerical methods and physical prospects (2021)
[12] Gibbons, G. W.; Hawking, S. W.; Perry, M. J., Path integrals and the indefiniteness of the gravitational action, Nucl. Phys. B, 138, 141-50 (1978) · doi:10.1016/0550-3213(78)90161-X
[13] Louko, J.; Sorkin, R. D., Complex actions in two-dimensional topology change, Class. Quantum Grav., 14, 179-204 (1997) · Zbl 0868.53069 · doi:10.1088/0264-9381/14/1/018
[14] Horowitz, G. T.; Dowker, H. F.; Garcia, R. S.; Surya, S., Topology change in classical and quantum gravity. Morse index and causal continuity: a criterion for topology change in quantum gravity, Class. Quantum Grav.. Class. Quantum Grav., 17, 697-712 (2000) · Zbl 1140.83348 · doi:10.1088/0264-9381/17/3/308
[15] Witten, E., A note on complex spacetime metrics (2021)
[16] Lehners, J. L., Allowable complex metrics in minisuperspace quantum cosmology (2021)
[17] Visser, M., Feynman’s \(####\) prescription, almost real spacetimes, and acceptable complex spacetimes (2021) · Zbl 1522.83081
[18] Jordan, S.; Loll, R.; Jordan, S.; Loll, R., Causal dynamical triangulations without preferred foliation. De Sitter universe from causal dynamical triangulations without preferred foliation, Phys. Lett. B. Phys. Rev. D, 88, 155-9 (2013) · Zbl 1331.83064 · doi:10.1103/PhysRevD.88.044055
[19] Ambjorn, J.; Jurkiewicz, J.; Loll, R.; Ambjorn, J.; Gorlich, A.; Jurkiewicz, J.; Loll, R.; Ambjorn, J.; Jordan, S.; Jurkiewicz, J.; Loll, R., Emergence of a 4D world from causal quantum gravity. The nonperturbative quantum de Sitter universe. A second-order phase transition in CDT, Phys. Rev. Lett.. Phys. Rev. D. Phys. Rev. Lett., 107 (2011) · Zbl 1215.83030 · doi:10.1103/PhysRevLett.107.211303
[20] Regge, T.; Barrett, J. W.; Bahr, B.; Dittrich, B., General relativity without coordinates. First order Regge calculus. Regge calculus from a new angle, Nuovo Cimento. Class. Quantum Grav.. New J. Phys., 12, 2723 (2010) · Zbl 1360.83016 · doi:10.1088/1367-2630/12/3/033010
[21] Barrett, J. W.; Rocek, M.; Williams, R. M., A note on area variables in Regge calculus, Class. Quantum Grav., 16, 1373 (1999) · Zbl 0934.83019 · doi:10.1088/0264-9381/16/4/025
[22] Dittrich, B.; Speziale, S., Area-angle variables for general relativity, New J. Phys., 10 (2008) · doi:10.1088/1367-2630/10/8/083006
[23] Asante, S. K.; Dittrich, B.; Haggard, H. M.; Asante, S. K.; Dittrich, B.; Haggard, H. M., Effective spin foam models for four-dimensional quantum gravity. Discrete gravity dynamics from effective spin foams, Phys. Rev. Lett.. Class. Quantum Grav., 38 (2021) · Zbl 1482.83042 · doi:10.1088/1361-6382/ac011b
[24] Sorkin, R.; Sorkin, R., Time evolution problem in Regge calculus, Phys. Rev. D. Phys. Rev. D, 23, 565-96 (1981) · doi:10.1103/PhysRevD.23.565
[25] Sorkin, R. D., Lorentzian angles and trigonometry including lightlike vectors (2019)
[26] Dittrich, B.; Gielen, S.; Schander, S., Lorentzian quantum cosmology goes simplicial, Class. Quantum Grav., 39 (2022) · Zbl 1484.83107 · doi:10.1088/1361-6382/ac42ad
[27] Hartle, J. B.; Hartle, J. B.; Hartle, J. B., Simplicial minisuperspace I. General discussion. Simplicial minisuperspace. II. Some classical solutions on simple triangulations. Simplicial minisuperspace. III. Integration contours in a five-simplex model, J. Math. Phys.. J. Math. Phys.. J. Math. Phys., 30, 452-60 (1989) · doi:10.1063/1.528410
[28] Dittrich, B.; Loll, R., Counting a black hole in Lorentzian product triangulations, Class. Quantum Grav., 23, 3849-78 (2006) · Zbl 1096.83041 · doi:10.1088/0264-9381/23/11/012
[29] Collins, P. A.; Williams, R. M.; Liu, R. G.; Williams, R. M., Dynamics of the Friedmann universe using Regge calculus. Regge calculus models of the closed vacuum Λ-FLRW universe, Phys. Rev. D. Phys. Rev. D, 93, 965-71 (2016) · doi:10.1103/PhysRevD.93.024032
[30] Tate, K.; Visser, M., Fixed-topology Lorentzian triangulations: quantum Regge calculus in the Lorentzian domain, J. High Energy Phys., 11, 072 (2011) · Zbl 1306.83029 · doi:10.1007/JHEP11(2011)072
[31] Engle, J. S.; Kaminski, W.; Oliveira, J. R.; Han, M.; Huang, Z.; Liu, H.; Qu, D., Addendum to ‘EPRL/FK asymptotics and the flatness problem’. Complex critical points and curved geometries in four-dimensional Lorentzian spinfoam quantum gravity (2021)
[32] Bojowald, M.; Mielczarek, J.; Bojowald, M.; Brahma, S., Some implications of signature-change in cosmological models of loop quantum gravity. Loop quantum gravity, signature change and the no-boundary proposal, J. Cosmol. Astropart. Phys.. Phys. Rev. D, 102, JCAP08(2015)052 (2020) · doi:10.1103/PhysRevD.102.106023
[33] Barrett, J. W.; Foxon, T. J., Semiclassical limits of simplicial quantum gravity, Class. Quantum Grav., 11, 543-56 (1994) · Zbl 0797.53060 · doi:10.1088/0264-9381/11/3/009
[34] Han, M.; Liu, H., Analytic continuation of spin foam models (2021)
[35] Dittrich, B.; Bahr, B.; Dittrich, B.; Dittrich, B., Diffeomorphism symmetry in quantum gravity models. (Broken) gauge symmetries and constraints in Regge calculus. How to construct diffeomorphism symmetry on the lattice, Adv. Sci. Lett.. Class. Quantum Grav.. Proc. Sci., 140, 012 (2011) · doi:10.22323/1.140.0012
[36] Bahr, B.; Dittrich, B.; Bahr, B.; Dittrich, B., Improved and perfect actions in discrete gravity. Breaking and restoring of diffeomorphism symmetry in discrete gravity, Phys. Rev. D. AIP Conf. Proc., 1196, 10 (2009) · doi:10.1063/1.3284371
[37] Bahr, B.; Dittrich, B.; Steinhaus, S., Perfect discretization of reparametrization invariant path integrals, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.105026
[38] Dittrich, B.; Steinhaus, S.; Bahr, B.; Steinhaus, S.; Asante, S. K.; Dittrich, B., Path integral measure and triangulation independence in discrete gravity. Numerical evidence for a phase transition in 4d spin foam quantum gravity. Perfect discretizations as a gateway to one-loop partition functions for 4D gravity, Phys. Rev. D. Phys. Rev. Lett., 117 (2021) · doi:10.1103/PhysRevLett.117.141302
[39] Dittrich, B.; Höhn, P. A.; Dittrich, B.; Hohn, P. A.; Dittrich, B.; Hoehn, P. A., From covariant to canonical formulations of discrete gravity. Canonical simplicial gravity. Constraint analysis for variational discrete systems, Class. Quantum Grav.. Class. Quantum Grav.. J. Math. Phys., 54 (2013) · Zbl 1302.37047 · doi:10.1063/1.4818895
[40] Dittrich, B.; Freidel, L.; Speziale, S., Linearized dynamics from the 4-simplex Regge action, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.104020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.