×

The discreet charm of the discrete series in \(\mathrm{dS}_2\). (English) Zbl 1536.81193

Summary: We study quantum field theories placed on a two-dimensional de Sitter spacetime (\(\mathrm{dS}_2\)) with an eye on the group-theoretic organization of single and multi-particle states. We explore the distinguished role of the discrete series unitary irreducible representation (UIR) in the Hilbert space. By employing previous attempts to realize these states in free tachyonic scalar field theories, we propose how the discrete series may contribute to the Källén-Lehmann decomposition of an interacting scalar two-point function. We also study BF gauge theories with \(SL(N, \mathbb{R})\) gauge group in \(\mathrm{dS}_2\) and establish a relation between the discrete series UIRs and the operator content of these theories. Although present at the level of the operators, states carrying discrete series quantum numbers are projected out of the gauge-invariant Hilbert space. This projection is reminiscent of what happens for quantum field theories coupled to semiclassical de Sitter gravity, where we must project onto the subspace of de Sitter invariant states. We discuss how to impose the diffeomorphism constraints on local field-theory operators coupled to two-dimensional gravity in de Sitter, with particular emphasis on the role of contact terms. Finally, we discuss an SYK-type model with a random two-body interaction that encodes an infinite tower of discrete series operators. We speculate on its potential microscopic connection to the \(SL(N, \mathbb{R})\) BF theory in the large-\(N\) limit.
{© 2023 The Author(s). Published by IOP Publishing Ltd}

MSC:

81T45 Topological field theories in quantum mechanics
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83F05 Relativistic cosmology
83C80 Analogues of general relativity in lower dimensions
39A12 Discrete version of topics in analysis
12E25 Hilbertian fields; Hilbert’s irreducibility theorem
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
35P15 Estimates of eigenvalues in context of PDEs
70H45 Constrained dynamics, Dirac’s theory of constraints

References:

[1] Wigner, E. P., On unitary representations of the inhomogeneous Lorentz group, Ann. Math., 40, 149-204 (1939) · JFM 65.1129.01 · doi:10.2307/1968551
[2] Weinberg, S., The Quantum Theory of Fields. Vol. 1: Foundations, p 6 (2005), Cambridge University Press · Zbl 1069.81501
[3] Dirac, P. A M., The electron wave equation in de-Sitter space, Ann. Math., 36, 657-69 (1935) · Zbl 0012.13503 · doi:10.2307/1968649
[4] Nachtmann, O., Quantum theory in de-sitter space, Commun. Math. Phys., 6, 1-16 (1967) · Zbl 0163.21803 · doi:10.1007/BF01646319
[5] Börner, GDürr, H P1969Classical and quantum fields in de Sitter spaceTechnical ReportMax-Planck-Institut Fuer Physik und Astrophysik · Zbl 0182.59703
[6] Tagirov, E. A., Consequences of field quantization in de Sitter type cosmological models, Ann. Phys., 76, 561-79 (1973) · doi:10.1016/0003-4916(73)90047-X
[7] Deser, S.; Nepomechie, R. I., Gauge invariance versus masslessness in de Sitter space, Ann. Phys., 154, 396 (1984) · doi:10.1016/0003-4916(84)90156-8
[8] Deser, S.; Waldron, A., Partial masslessness of higher spins in (A)dS, Nucl. Phys. B, 607, 577-604 (2001) · Zbl 0969.81601 · doi:10.1016/S0550-3213(01)00212-7
[9] Deser, S.; Waldron, A., Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett., 87 (2001) · Zbl 0969.81601 · doi:10.1103/PhysRevLett.87.031601
[10] Deser, S.; Waldron, A., Arbitrary spin representations in de Sitter from dS/CFT with applications to dS supergravity, Nucl. Phys. B, 662, 379-92 (2003) · Zbl 1040.81068 · doi:10.1016/S0550-3213(03)00348-1
[11] Higuchi, A.; Marolf, D.; Morrison, I. A., On the equivalence between Euclidean and In-In formalisms in de Sitter QFT, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.084029
[12] Vasiliev, M. A., Consistent equation for interacting gauge fields of all spins in \(####\)-dimensions, Phys. Lett. B, 243, 378-82 (1990) · Zbl 1332.81084 · doi:10.1016/0370-2693(90)91400-6
[13] Bros, J., Complexified de Sitter space: analytic causal kernels and Kallen-Lehmann type representation, Nucl. Phys. B, 18, 22-28 (1991) · Zbl 0957.81562 · doi:10.1016/0920-5632(91)90119-Y
[14] Bros, J.; Moschella, U., Two point functions and quantum fields in de Sitter universe, Rev. Math. Phys., 8, 327-92 (1996) · Zbl 0858.53054 · doi:10.1142/S0129055X96000123
[15] Bros, J.; Epstein, H.; Gaudin, M.; Moschella, U.; Pasquier, V., Triangular invariants, three-point functions and particle stability on the de Sitter universe, Commun. Math. Phys., 295, 261-88 (2010) · Zbl 1197.83059 · doi:10.1007/s00220-009-0875-4
[16] Bros, J.; Epstein, H.; Moschella, U., Scalar tachyons in the de Sitter universe, Lett. Math. Phys., 93, 203-11 (2010) · Zbl 1196.81184 · doi:10.1007/s11005-010-0406-4
[17] Bros, J.; Epstein, H.; Moschella, U., Particle decays and stability on the de Sitter universe, Ann. Henri Poincare, 11, 611-58 (2010) · Zbl 1208.83111 · doi:10.1007/s00023-010-0042-7
[18] Epstein, H., Remarks on quantum field theory on de Sitter and anti-de Sitter space-times, Pramana, 78, 853-64 (2012) · doi:10.1007/s12043-012-0312-7
[19] Epstein, H.; Moschella, U., de Sitter tachyons and related topics, Commun. Math. Phys., 336, 381-430 (2015) · Zbl 1314.83014 · doi:10.1007/s00220-015-2308-x
[20] Epstein, H.; Moschella, U., Topological surprises in de Sitter QFT in two-dimensions, Int. J. Mod. Phys. A, 33 (2018) · Zbl 1405.81124 · doi:10.1142/S0217751X18450094
[21] Joung, E.; Mourad, J.; Parentani, R., Group theoretical approach to quantum fields in de Sitter space. I. The principle series, J. High Energy Phys., JHEP08(2006)082 (2006) · doi:10.1088/1126-6708/2006/08/082
[22] Joung, E.; Mourad, J.; Parentani, R., Group theoretical approach to quantum fields in de Sitter space. II. The complementary and discrete series, J. High Energy Phys., JHEP09(2007)030 (2007) · doi:10.1088/1126-6708/2007/09/030
[23] Marolf, D.; Morrison, I., Group Averaging of massless scalar fields in \(####\) de Sitter, Class. Quantum Grav., 26 (2009) · Zbl 1159.83353 · doi:10.1088/0264-9381/26/3/035001
[24] Marolf, D.; Morrison, I. A., The IR stability of de Sitter QFT: results at all orders, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.044040
[25] Basile, T.; Bekaert, X.; Boulanger, N., Mixed-symmetry fields in de Sitter space: a group theoretical glance, J. High Energy Phys., JHEP05(2017)081 (2017) · Zbl 1380.81189 · doi:10.1007/JHEP05(2017)081
[26] Marolf, D.; Morrison, I. A., The IR stability of de Sitter: loop corrections to scalar propagators, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.105032
[27] Marolf, D.; Morrison, I. A., The IR stability of de Sitter QFT: Physical initial conditions, Gen. Relativ. Gravit., 43, 3497-530 (2011) · Zbl 1230.83016 · doi:10.1007/s10714-011-1233-3
[28] Anninos, D.; Hofman, D. M.; Kruthoff, J., Charged quantum fields in AdS_2, SciPost Phys., 7, 054 (2019) · doi:10.21468/SciPostPhys.7.4.054
[29] Anous, T.; Skulte, J., An invitation to the principal series, SciPost Phys., 9, 028 (2020) · doi:10.21468/SciPostPhys.9.3.028
[30] Sengör, G.; Skordis, C., Unitarity at the late time boundary of de Sitter, J. High Energy Phys., JHEP06(2020)041 (2020) · Zbl 1437.83045 · doi:10.1007/JHEP06(2020)041
[31] Sengor, G.; Skordis, C., Scalar two-point functions at the late-time boundary of de Sitter (2021)
[32] Sun, Z., A note on the representations of \(#### (2021)\)
[33] Letsios, V. A., (Non-)unitarity of strictly and partially massless fermions on de Sitter space (2023) · Zbl 07701830
[34] Enayati, M.; Gazeau, J-P; Pejhan, H.; Wang, A., The de Sitter group and its representations: a window on the notion of de Sitterian elementary systems (2022)
[35] Takook, M. V.; Gazeau, J. P.; Huguet, E., Asymptotic states and S-matrix operator in de Sitter ambient space formalism (2023)
[36] Loparco, M.; Penedones, J.; Salehi Vaziri, K.; Sun, Z., The Källén-Lehmann representation in de Sitter spacetime (2023) · Zbl 07807276
[37] Higuchi, A1987Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter group SO(N,1)J. Math. Phys.281553; Higuchi, A2002J. Math. Phys.436385(erratum)
[38] Barut, A. O.; Fronsdal, C., On non-compact groups. II. Representations of the \(####\) Lorentz group, Proc. R. Soc. A, 287, 532-48 (1965) · Zbl 0132.27902 · doi:10.1098/rspa.1965.0195
[39] Kuriyan, J. G.; Mukunda, N.; Sudarshan, E. C G., Master analytic representation: reduction of \(####\) in an \(####\) basis, J. Math. Phys., 9, 2100-8 (1968) · Zbl 0172.56902 · doi:10.1063/1.1664551
[40] Witten, E., Quantum gravity in de Sitter space (2001)
[41] Maldacena, J. M., Non-Gaussian features of primordial fluctuations in single field inflationary models, J. High Energy Phys., JHEP05(2003)013 (2003) · doi:10.1088/1126-6708/2003/05/013
[42] Strominger, A., The dS/CFT correspondence, J. High Energy Phys., JHEP10(2001)034 (2001) · doi:10.1088/1126-6708/2001/10/034
[43] Anninos, D.; Hartman, T.; Strominger, A., Higher spin realization of the dS/CFT correspondence, Class. Quantum Grav., 34 (2017) · Zbl 1354.83043 · doi:10.1088/1361-6382/34/1/015009
[44] Anninos, D.; Denef, F.; Monten, R.; Sun, Z., Higher spin de Sitter Hilbert space, J. High Energy Phys., JHEP10(2019)071 (2019) · Zbl 1427.83017 · doi:10.1007/JHEP10(2019)071
[45] Isono, H.; Liu, H. M.; Noumi, T., Wavefunctions in dS/CFT revisited: principal series and double-trace deformations, J. High Energy Phys., JHEP04(2021)166 (2021) · Zbl 1462.81161 · doi:10.1007/JHEP04(2021)166
[46] Anninos, D.; Anous, T.; Freedman, D. Z.; Konstantinidis, G., Late-time structure of the Bunch-Davies de Sitter wavefunction, J. Cosmol. Astropart. Phys., JCAP11(2015)048 (2015) · doi:10.1088/1475-7516/2015/11/048
[47] Anninos, D.; Mahajan, R.; Radičević, D.; Shaghoulian, E., Chern-Simons-Ghost theories and de Sitter space, J. High Energy Phys., JHEP01(2015)074 (2015) · Zbl 1388.81621 · doi:10.1007/JHEP01(2015)074
[48] Arkani-Hamed, N.; Maldacena, J., Cosmological collider physics (2015)
[49] Sleight, C.; Taronna, M., Bootstrapping inflationary correlators in Mellin space, J. High Energy Phys., JHEP02(2020)098 (2020) · Zbl 1435.81174 · doi:10.1007/JHEP02(2020)098
[50] Sleight, C.; Taronna, M., From AdS to dS exchanges: spectral representation, Mellin amplitudes and crossing (2020)
[51] Goodhew, H.; Jazayeri, S.; Pajer, E., The cosmological optical theorem, J. Cosmol. Astropart. Phys., JCAP04(2021)021 (2021) · Zbl 1485.83139 · doi:10.1088/1475-7516/2021/04/021
[52] Melville, S.; Pajer, E., Cosmological cutting rules, J. High Energy Phys., JHEP05(2021)249 (2021) · doi:10.1007/JHEP05(2021)249
[53] Arkani-Hamed, N.; Baumann, D.; Lee, H.; Pimentel, G. L., The cosmological bootstrap: inflationary correlators from symmetries and singularities, J. High Energy Phys., JHEP04(2020)105 (2020) · Zbl 1436.85001 · doi:10.1007/JHEP04(2020)105
[54] Baumann, D.; Duaso Pueyo, C.; Joyce, A.; Lee, H.; Pimentel, G. L., The cosmological bootstrap: weight-shifting operators and scalar seeds, J. High Energy Phys., JHEP12(2020)204 (2020) · doi:10.1007/JHEP12(2020)204
[55] Baumann, D.; Duaso Pueyo, C.; Joyce, A.; Lee, H.; Pimentel, G. L., The cosmological bootstrap: spinning correlators from symmetries and factorization (2020)
[56] Hogervorst, M.; a. Penedones, J.; Vaziri, K. S., Towards the non-perturbative cosmological bootstrap (2021)
[57] Penedones, J.; Salehi Vaziri, K.; Sun, Z., Hilbert space of quantum field theory in de Sitter spacetime (2023)
[58] Arkani-Hamed, N.; Benincasa, P.; Postnikov, A., Cosmological Polytopes and the Wavefunction of the universe (2017)
[59] Benincasa, P., Wavefunctionals/S-matrix techniques in de Sitter, Proc. Sci., 406, 358 (2022) · doi:10.22323/1.406.0358
[60] Albayrak, S.; Benincasa, P.; Pueyo, C. D., Perturbative unitarity and the wavefunction of the universe (2023)
[61] Benincasa, P., From the flat-space S-matrix to the wavefunction of the universe (2018)
[62] Galante, D. A., Modave lectures on de Sitter space and holography, Proc. Sci., 435, 003 (2023) · doi:10.22323/1.435.0003
[63] Spradlin, M.; Strominger, A.; Volovich, A., Les Houches lectures on de Sitter space, pp 423-53 (2001)
[64] Anninos, D., de Sitter musings, Int. J. Mod. Phys. A, 27 (2012) · Zbl 1247.83068 · doi:10.1142/S0217751X1230013X
[65] Bousso, R., Adventures in de Sitter space, pp 539-69 (2002) · Zbl 1186.83079
[66] Bargmann, V., Irreducible unitary representations of the Lorentz group, Ann. Math., 48, 568-640 (1947) · Zbl 0045.38801 · doi:10.2307/1969129
[67] Harish-Chandra, Plancherel formula for the \(####\) real unimodular group, Proc. Natl Acad. Sci., 38, 337-42 (1952) · Zbl 0049.15703 · doi:10.1073/pnas.38.4.337
[68] Thomas, L. H., On unitary representations of the group of de sitter space, Ann. Math., 42, 113-26 (1941) · Zbl 0024.30001 · doi:10.2307/1968990
[69] Higuchi, A., Forbidden mass range for spin-2 field theory in de Sitter Space-time, Nucl. Phys. B, 282, 397-436 (1987) · doi:10.1016/0550-3213(87)90691-2
[70] Dobrev, V. K.; Mack, G.; Petkova, V. B.; Petrova, S. G.; Todorov, I. T., Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, vol 63 (1977), Springer · Zbl 0407.43010
[71] Repka, J., Tensor products of unitary representations of SL_2 (R), Am. J. Math., 100, 747 (1978) · Zbl 0402.22010 · doi:10.2307/2373909
[72] Nachtmann, O., Dynamische stabilität im de-Sitter-Raum, Oesterr. Akad. Wiss. Math. Naturwiss. Kl. Sitz. Abteilung, 176, 363-79 (1968) · Zbl 0169.56903
[73] Kallen, G., On the definition of the renormalization constants in quantum electrodynamics, Helv. Phys. Acta, 25, 417 (1952) · Zbl 0046.21402 · doi:10.1007/978-3-319-00627-7_90
[74] Lehmann, H., On the Properties of propagation functions and renormalization contants of quantized fields, Nuovo Cimento, 11, 342-57 (1954) · Zbl 0055.21403 · doi:10.1007/BF02783624
[75] Hollands, S., Massless interacting quantum fields in de Sitter spacetime, Ann. Henri Poincare, 13, 1039-81 (2012) · Zbl 1332.81156 · doi:10.1007/s00023-011-0140-1
[76] Di Pietro, L.; Gorbenko, V.; Komatsu, S., Analyticity and unitarity for cosmological correlators (2021) · Zbl 1522.81483
[77] Alkalaev, K. B., On higher spin extension of the Jackiw-Teitelboim gravity model, J. Phys. A: Math. Theor., 47 (2014) · Zbl 1300.83013 · doi:10.1088/1751-8113/47/36/365401
[78] Alkalaev, K.; Bekaert, X., Towards higher-spin AdS_2/CFT_1 holography, J. High Energy Phys., JHEP04(2020)206 (2020) · Zbl 1436.83066 · doi:10.1007/JHEP04(2020)206
[79] Isler, K.; Trugenberger, C. A., A gauge theory of two-dimensional quantum gravity, Phys. Rev. Lett., 63, 834 (1989) · doi:10.1103/PhysRevLett.63.834
[80] Chamseddine, A. H.; Wyler, D., Gauge theory of topological gravity in \(####\)-dimensions, Phys. Lett. B, 228, 75-78 (1989) · doi:10.1016/0370-2693(89)90528-5
[81] Higuchi, A., Quantum linearization instabilities of de Sitter space-time. 1, Class. Quantum Grav., 8, 1961-81 (1991) · doi:10.1088/0264-9381/8/11/009
[82] Higuchi, A., Quantum linearization instabilities of de Sitter space-time. 2, Class. Quantum Grav., 8, 1983-2004 (1991) · doi:10.1088/0264-9381/8/11/010
[83] Marolf, D.; Morrison, I. A., Group averaging for de Sitter free fields, Class. Quantum Grav., 26 (2009) · Zbl 1181.83059 · doi:10.1088/0264-9381/26/23/235003
[84] Grumiller, D.; Leston, M.; Vassilevich, D., Anti-de Sitter holography for gravity and higher spin theories in two dimensions, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.044001
[85] Alkalaev, K.; Bekaert, X., On BF-type higher-spin actions in two dimensions, J. High Energy Phys., JHEP05(2020)158 (2020) · Zbl 1437.83083 · doi:10.1007/JHEP05(2020)158
[86] Martinec, E. J.; Moore, W. E., Modeling quantum gravity effects in inflation, J. High Energy Phys., JHEP07(2014)053 (2014) · doi:10.1007/JHEP07(2014)053
[87] Bautista, T.; Dabholkar, A., Quantum cosmology near two dimensions, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.044017
[88] Bautista, T.; Dabholkar, A.; Erbin, H., Quantum gravity from timelike Liouville theory, J. High Energy Phys., JHEP10(2019)284 (2019) · Zbl 1427.83018 · doi:10.1007/JHEP10(2019)284
[89] Anninos, D.; Bautista, T.; Mühlmann, B., The two-sphere partition function in two-dimensional quantum gravity, J. High Energy Phys., JHEP09(2021)116 (2021) · Zbl 1472.83029 · doi:10.1007/JHEP09(2021)116
[90] Mühlmann, B., The two-sphere partition function in two-dimensional quantum gravity at fixed area, J. High Energy Phys., JHEP09(2021)189 (2021) · Zbl 1472.83070 · doi:10.1007/JHEP09(2021)189
[91] Mühlmann, B., The two-sphere partition function from timelike Liouville theory at three-loop order, J. High Energy Phys., JHEP05(2022)057 (2022) · Zbl 1522.81522 · doi:10.1007/JHEP05(2022)057
[92] Maldacena, J.; Turiaci, G. J.; Yang, Z., Two dimensional nearly de Sitter gravity, J. High Energy Phys., JHEP01(2021)139 (2021) · Zbl 1459.83035 · doi:10.1007/JHEP01(2021)139
[93] Cotler, J.; Jensen, K.; Maloney, A., Low-dimensional de Sitter quantum gravity, J. High Energy Phys., JHEP06(2020)048 (2020) · Zbl 1437.83037 · doi:10.1007/JHEP06(2020)048
[94] Anninos, D.; Hofman, D. M., Infrared realization of dS_2 in AdS_2, Class. Quantum Grav., 35 (2018) · Zbl 1409.83135 · doi:10.1088/1361-6382/aab143
[95] Anninos, D.; Galante, D. A.; Hofman, D. M., de Sitter horizons and holographic liquids, J. High Energy Phys., JHEP07(2019)038 (2019) · Zbl 1418.83034 · doi:10.1007/JHEP07(2019)038
[96] Schlingemann, D., Euclidean field theory on a sphere (1999)
[97] Anninos, D.; Denef, F.; Law, Y. T A.; Sun, Z., Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions, J. High Energy Phys., JHEP01(2022)088 (2022) · Zbl 1521.81335 · doi:10.1007/JHEP01(2022)088
[98] Mottola, E., Particle creation in de Sitter space, Phys. Rev. D, 31, 754 (1985) · doi:10.1103/PhysRevD.31.754
[99] Bousso, R.; Maloney, A.; Strominger, A., Conformal vacua and entropy in de Sitter space, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.104039
[100] Guijosa, A.; Lowe, D. A.; Murugan, J., A prototype for dS/CFT, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.046001
[101] Folacci, A., Zero modes, Euclideanization and quantization, Phys. Rev. D, 46, 2553-9 (1992) · doi:10.1103/PhysRevD.46.2553
[102] Allen, B.; Folacci, A., The massless minimally coupled scalar field in de Sitter space, Phys. Rev. D, 35, 3771 (1987) · doi:10.1103/PhysRevD.35.3771
[103] Bonifacio, J.; Hinterbichler, K.; Joyce, A.; Rosen, R. A., Shift symmetries in (anti) de Sitter space, J. High Energy Phys., JHEP02(2019)178 (2019) · Zbl 1411.83062 · doi:10.1007/JHEP02(2019)178
[104] Ford, L. H., Quantum instability of de Sitter space-time, Phys. Rev. D, 31, 710 (1985) · doi:10.1103/PhysRevD.31.710
[105] Allen, B., Vacuum states in de Sitter space, Phys. Rev. D, 32, 3136 (1985) · doi:10.1103/PhysRevD.32.3136
[106] Di Francesco, P.; Mathieu, P.; Senechal, D., Conformal Field Theory (Graduate Texts in Contemporary Physics) (1997), Springer · Zbl 0869.53052
[107] Folacci, A., Toy model for the zero mode problem in the conformal sector of de Sitter quantum gravity, Phys. Rev. D, 53, 3108-17 (1996) · doi:10.1103/PhysRevD.53.3108
[108] Hinterbichler, K.; Joyce, A., Manifest duality for partially massless higher spins, J. High Energy Phys., JHEP09(2016)141 (2016) · Zbl 1390.83285 · doi:10.1007/JHEP09(2016)141
[109] Brust, C.; Hinterbichler, K., Partially massless higher-spin theory, J. High Energy Phys., JHEP02(2017)086 (2017) · Zbl 1377.81062 · doi:10.1007/JHEP02(2017)086
[110] Pethybridge, B.; Schaub, V., Tensors and spinors in de Sitter space (2021) · Zbl 1522.83255
[111] Schaub, V., Spinors in (Anti-)de Sitter Space (2023) · Zbl 07754721
[112] Kitaev, A.; Preskill, J., Topological entanglement entropy, Phys. Rev. Lett., 96 (2006) · doi:10.1103/PhysRevLett.96.110404
[113] Levin, M.; Wen, X-G, Detecting topological order in a ground state wave function, Phys. Rev. Lett., 96 (2006) · doi:10.1103/PhysRevLett.96.110405
[114] Henneaux, M., Quantum gravity in two-dimensions: exact solution of the Jackiw model, Phys. Rev. Lett., 54, 959-62 (1985) · doi:10.1103/PhysRevLett.54.959
[115] Letsios, V. A., The eigenmodes for spinor quantum field theory in global de Sitter space-time, J. Math. Phys., 62 (2021) · Zbl 1461.81035 · doi:10.1063/5.0038651
[116] Vasiliev, M. A., Higher spin gauge theories: star product and AdS space (1999) · Zbl 0990.81084
[117] Seiberg, N2015Fun with free field theory(available at: www.youtube.com/watch?v=pqgNrVTQ4yM)
[118] Iliesiu, L. V.; Pufu, S. S.; Verlinde, H.; Wang, Y., An exact quantization of Jackiw-Teitelboim gravity, J. High Energy Phys., JHEP11(2019)091 (2019) · Zbl 1429.83063 · doi:10.1007/JHEP11(2019)091
[119] Maldacena, J.; Stanford, D.; Yang, Z., Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, Prog. Theor. Exp. Phys., 2016, 12C104 (2016) · Zbl 1361.81112 · doi:10.1093/ptep/ptw124
[120] Kitaev, A.; Suh, S. J., The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, J. High Energy Phys., JHEP05(2018)183 (2018) · Zbl 1391.83080 · doi:10.1007/JHEP05(2018)183
[121] Iliesiu, L. V.; Kruthoff, J.; Turiaci, G. J.; Verlinde, H., JT gravity at finite cutoff, SciPost Phys., 9, 023 (2020) · doi:10.21468/SciPostPhys.9.2.023
[122] Moncrief, V., Invariant states and quantized gravitational perturbations, Phys. Rev. D, 18, 983-9 (1978) · doi:10.1103/PhysRevD.18.983
[123] Moncrief, V., Quantum linearization instabilities, Gen. Relativ. Gravit., 10, 93-97 (1979) · doi:10.1007/BF00756792
[124] Chandrasekaran, V.; Longo, R.; Penington, G.; Witten, E., An algebra of observables for de Sitter space, J. High Energy Phys., JHEP02(2023)082 (2023) · Zbl 1541.81075 · doi:10.1007/JHEP02(2023)082
[125] Chakraborty, T.; Chakravarty, J.; Godet, V.; Paul, P.; Raju, S., The Hilbert space of de Sitter quantum gravity (2023)
[126] Friedan, D.; Konechny, A., Curvature formula for the space of 2-d conformal field theories, J. High Energy Phys., JHEP09(2012)113 (2012) · Zbl 1397.81303 · doi:10.1007/JHEP09(2012)113
[127] Liu, J.; Polchinski, J., Renormalization of the Möbius volume, Phys. Lett. B, 203, 39-43 (1988) · doi:10.1016/0370-2693(88)91566-3
[128] Maldacena, J.; Stanford, D., Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.106002
[129] Anninos, D.; Anous, T.; Denef, F., Disordered quivers and cold horizons, J. High Energy Phys., JHEP12(2016)071 (2016) · doi:10.1007/JHEP12(2016)071
[130] Anninos, D.; Anous, T.; D’Agnolo, R. T., Marginal deformations and rotating horizons, J. High Energy Phys., JHEP12(2017)095 (2017) · Zbl 1383.81175 · doi:10.1007/JHEP12(2017)095
[131] Yoon, J., SYK models and SYK-like tensor models with global symmetry, J. High Energy Phys., JHEP10(2017)183 (2017) · Zbl 1383.81264 · doi:10.1007/JHEP10(2017)183
[132] González, H. A.; Grumiller, D.; Salzer, J., Towards a bulk description of higher spin SYK, J. High Energy Phys., JHEP05(2018)083 (2018) · Zbl 1391.83077 · doi:10.1007/JHEP05(2018)083
[133] Holstein, T.; Primakoff, H., Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., 58, 1098-113 (1940) · Zbl 0027.18604 · doi:10.1103/PhysRev.58.1098
[134] Fischler, W2000Taking de Sitter seriously. Talk given at role of scaling laws in physics and biology (celebrating the 60th birthday of geoffrey west)(unpublished)
[135] Banks, T.; Fiol, B.; Morisse, A., Towards a quantum theory of de Sitter space, J. High Energy Phys., JHEP12(2006)004 (2006) · Zbl 1226.83021 · doi:10.1088/1126-6708/2006/12/004
[136] Bousso, R., Positive vacuum energy and the N bound, J. High Energy Phys., JHEP11(2000)038 (2000) · Zbl 0990.83513 · doi:10.1088/1126-6708/2000/11/038
[137] Parikh, M. K.; Verlinde, E. P., de Sitter holography with a finite number of states, J. High Energy Phys., JHEP01(2005)054 (2005) · doi:10.1088/1126-6708/2005/01/054
[138] Kitaev, A., Notes on \(####\) representations (2017)
[139] Bielski, S., Orthogonality relations for the associated Legendre functions of imaginary order, Integral Transforms Spec. Funct., 24, 331-7 (2013) · Zbl 1275.33013 · doi:10.1080/10652469.2012.690097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.