×

The Källén-Lehmann representation in de Sitter Spacetime. (English) Zbl 07807276

Summary: We study two-point functions of symmetric traceless local operators in the bulk of de Sitter spacetime. We derive the Källén-Lehmann spectral decomposition for any spin and show that unitarity implies its spectral densities are nonnegative. In addition, we recover the Källén-Lehmann decomposition in Minkowski space by taking the flat space limit. Using harmonic analysis and the Wick rotation to Euclidean Anti de Sitter, we derive an inversion formula to compute the spectral densities. Using the inversion formula, we relate the analytic structure of the spectral densities to the late-time boundary operator content. We apply our technical tools to study two-point functions of composite operators in free and weakly coupled theories. In the weakly coupled case, we show how the Källén-Lehmann decomposition is useful to find the anomalous dimensions of the late-time boundary operators. We also derive the Källén-Lehmann representation of two-point functions of spinning primary operators of a Conformal Field Theory on de Sitter.

MSC:

81-XX Quantum theory

References:

[1] J. Penedones, K. Salehi Vaziri and Z. Sun, Hilbert space of Quantum Field Theory in de Sitter spacetime, arXiv:2301.04146 [INSPIRE].
[2] Bros, J., Triangular invariants, three-point functions and particle stability on the de Sitter universe, Commun. Math. Phys., 295, 261 (2010) · Zbl 1197.83059 · doi:10.1007/s00220-009-0875-4
[3] J. Bros, H. Epstein and U. Moschella, Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time, Commun. Math. Phys.196 (1998) 535 [gr-qc/9801099] [INSPIRE]. · Zbl 1060.81542
[4] J. Bros and U. Moschella, Two point functions and quantum fields in de Sitter universe, Rev. Math. Phys.8 (1996) 327 [gr-qc/9511019] [INSPIRE]. · Zbl 0858.53054
[5] Di Pietro, L.; Gorbenko, V.; Komatsu, S., Analyticity and unitarity for cosmological correlators, JHEP, 03, 023 (2022) · Zbl 1522.81483 · doi:10.1007/JHEP03(2022)023
[6] Hogervorst, M.; Penedones, J.; Vaziri, KS, Towards the non-perturbative cosmological bootstrap, JHEP, 02, 162 (2023) · Zbl 1541.81120 · doi:10.1007/JHEP02(2023)162
[7] Schaub, V., Spinors in (Anti-)de Sitter Space, JHEP, 09, 142 (2023) · Zbl 07754721 · doi:10.1007/JHEP09(2023)142
[8] J. Bros, Complexified de Sitter space: Analytic causal kernels and Kallen-Lehmann type representation, Nucl. Phys. B Proc. Suppl.18 (1991) 22 [INSPIRE]. · Zbl 0957.81562
[9] Hollands, S., Massless interacting quantum fields in deSitter spacetime, Annales Henri Poincare, 13, 1039 (2012) · Zbl 1332.81156 · doi:10.1007/s00023-011-0140-1
[10] Epstein, H., Remarks on quantum field theory on de Sitter and anti-de Sitter space-times, Pramana, 78, 853 (2012) · doi:10.1007/s12043-012-0312-7
[11] D. Baumann et al., Snowmass White Paper: The Cosmological Bootstrap, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17-26 (2022) [arXiv:2203.08121] [INSPIRE].
[12] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
[13] Arkani-Hamed, N.; Baumann, D.; Lee, H.; Pimentel, GL, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP, 04, 105 (2020) · Zbl 1436.85001 · doi:10.1007/JHEP04(2020)105
[14] Pajer, E., Building a Boostless Bootstrap for the Bispectrum, JCAP, 01, 023 (2021) · Zbl 1484.83018 · doi:10.1088/1475-7516/2021/01/023
[15] Goodhew, H.; Jazayeri, S.; Pajer, E., The Cosmological Optical Theorem, JCAP, 04, 021 (2021) · Zbl 1485.83139 · doi:10.1088/1475-7516/2021/04/021
[16] D. Green and R.A. Porto, Signals of a Quantum Universe, Phys. Rev. Lett.124 (2020) 251302 [arXiv:2001.09149] [INSPIRE].
[17] Goodhew, H.; Jazayeri, S.; Gordon Lee, MH; Pajer, E., Cutting cosmological correlators, JCAP, 08, 003 (2021) · Zbl 1492.83096 · doi:10.1088/1475-7516/2021/08/003
[18] Melville, S.; Pajer, E., Cosmological Cutting Rules, JHEP, 05, 249 (2021) · doi:10.1007/JHEP05(2021)249
[19] P. Kravchuk, D. Mazac and S. Pal, Automorphic Spectra and the Conformal Bootstrap, arXiv:2111.12716 [INSPIRE].
[20] Bissi, A.; Sarkar, S., A constructive solution to the cosmological bootstrap, JHEP, 09, 115 (2023) · Zbl 07754694 · doi:10.1007/JHEP09(2023)115
[21] Basile, T.; Bekaert, X.; Boulanger, N., Mixed-symmetry fields in de Sitter space: a group theoretical glance, JHEP, 05, 081 (2017) · Zbl 1380.81189 · doi:10.1007/JHEP05(2017)081
[22] V.A. Letsios, The eigenmodes for spinor quantum field theory in global de Sitter space-time, J. Math. Phys.62 (2021) 032303 [arXiv:2011.07875] [INSPIRE]. · Zbl 1461.81035
[23] Pethybridge, B.; Schaub, V., Tensors and spinors in de Sitter space, JHEP, 06, 123 (2022) · Zbl 1522.83255 · doi:10.1007/JHEP06(2022)123
[24] Letsios, VA, (Non-)unitarity of strictly and partially massless fermions on de Sitter space, JHEP, 05, 015 (2023) · Zbl 07701830 · doi:10.1007/JHEP05(2023)015
[25] V.K. Dobrev et al., Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Springer Berlin, Heidelberg (1977) [doi:10.1007/BFb0009678] [INSPIRE]. · Zbl 0407.43010
[26] Z. Sun, A note on the representations of SO(1, d + 1), arXiv:2111.04591 [INSPIRE].
[27] Bonifacio, J.; Hinterbichler, K.; Joyce, A.; Rosen, RA, Shift Symmetries in (Anti) de Sitter Space, JHEP, 02, 178 (2019) · Zbl 1411.83062 · doi:10.1007/JHEP02(2019)178
[28] Dirac, PAM, Unitary Representations of the Lorentz Group, Proc. Roy. Soc. Lond. A, 183, 284 (1945) · Zbl 0061.25311 · doi:10.1098/rspa.1945.0003
[29] Harish-Chandra, Infinite Irreducible Representations of the Lorentz Group, Proc. Roy. Soc. Lond. A189 (1947) 372. · Zbl 0029.09606
[30] Bargmann, V., Irreducible unitary representations of the Lorentz group, Annals Math., 48, 568 (1947) · Zbl 0045.38801 · doi:10.2307/1969129
[31] M.A.N.I.M. Gel’fand, Unitary representations of the Lorentz group, Izv. Akad. Nauk SSSR Ser. Mat11 (1947) 411. · Zbl 0037.15303
[32] Anous, T.; Skulte, J., An invitation to the principal series, SciPost Phys., 9, 028 (2020) · doi:10.21468/SciPostPhys.9.3.028
[33] D. Marolf and I.A. Morrison, Group Averaging of massless scalar fields in 1 + 1 de Sitter, Class. Quant. Grav.26 (2009) 035001 [arXiv:0808.2174] [INSPIRE]. · Zbl 1159.83353
[34] Costa, MS; Gonçalves, V.; Penedones, J., Spinning AdS Propagators, JHEP, 09, 064 (2014) · Zbl 1333.83138 · doi:10.1007/JHEP09(2014)064
[35] Costa, MS; Penedones, J.; Poland, D.; Rychkov, S., Spinning Conformal Correlators, JHEP, 11, 071 (2011) · Zbl 1306.81207 · doi:10.1007/JHEP11(2011)071
[36] D. Simmons-Duffin, Projectors, Shadows, and Conformal Blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125
[37] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge, U.K. (1984) [doi:10.1017/CBO9780511622632] [INSPIRE]. · Zbl 0972.81605
[38] Bunch, TS; Davies, PCW, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A, 360, 117 (1978) · doi:10.1098/rspa.1978.0060
[39] B. Allen, Vacuum States in de Sitter Space, Phys. Rev. D32 (1985) 3136 [INSPIRE].
[40] T. Banks and L. Mannelli, De Sitter vacua, renormalization and locality, Phys. Rev. D67 (2003) 065009 [hep-th/0209113] [INSPIRE]. · Zbl 1222.83075
[41] H. Collins, R. Holman and M.R. Martin, The fate of the alpha vacuum, Phys. Rev. D68 (2003) 124012 [hep-th/0306028] [INSPIRE].
[42] M.B. Einhorn and F. Larsen, Interacting quantum field theory in de Sitter vacua, Phys. Rev. D67 (2003) 024001 [hep-th/0209159] [INSPIRE].
[43] M.B. Einhorn and F. Larsen, Squeezed states in the de Sitter vacuum, Phys. Rev. D68 (2003) 064002 [hep-th/0305056] [INSPIRE].
[44] J. de Boer, V. Jejjala and D. Minic, Alpha-states in de Sitter space, Phys. Rev. D71 (2005) 044013 [hep-th/0406217] [INSPIRE].
[45] Sleight, C., A Mellin Space Approach to Cosmological Correlators, JHEP, 01, 090 (2020) · Zbl 1434.81117 · doi:10.1007/JHEP01(2020)090
[46] Sleight, C.; Taronna, M., Bootstrapping Inflationary Correlators in Mellin Space, JHEP, 02, 098 (2020) · Zbl 1435.81174 · doi:10.1007/JHEP02(2020)098
[47] M. Loparco, J. Qiao and Z. Sun, A radial variable for de Sitter two-point functions, arXiv:2310.15944.
[48] Bros, J.; Epstein, H.; Moschella, U., Scalar tachyons in the de Sitter universe, Lett. Math. Phys., 93, 203 (2010) · Zbl 1196.81184 · doi:10.1007/s11005-010-0406-4
[49] Folacci, A., BRST quantization of the massless minimally coupled scalar field in de Sitter space: Zero modes, euclideanization and quantization, Phys. Rev. D, 46, 2553 (1992) · doi:10.1103/PhysRevD.46.2553
[50] Epstein, H.; Moschella, U., de Sitter tachyons and related topics, Commun. Math. Phys., 336, 381 (2015) · Zbl 1314.83014 · doi:10.1007/s00220-015-2308-x
[51] D. Anninos, T. Anous, B. Pethybridge and G. Şengör, The Discreet Charm of the Discrete Series in DS_2, arXiv:2307.15832.
[52] M. Meineri, J. Penedones and T. Spirig, Renormalization group flows in AdS and the bootstrap program, arXiv:2305.11209 [INSPIRE].
[53] Karateev, D., Two-point functions and bootstrap applications in quantum field theories, JHEP, 02, 186 (2022) · Zbl 1522.81507 · doi:10.1007/JHEP02(2022)186
[54] D. Schlingemann, Euclidean field theory on a sphere, hep-th/9912235 [INSPIRE]. · Zbl 0969.81036
[55] Sleight, C.; Taronna, M., From AdS to dS exchanges: Spectral representation, Mellin amplitudes, and crossing, Phys. Rev. D, 104, L081902 (2021) · doi:10.1103/PhysRevD.104.L081902
[56] Sleight, C.; Taronna, M., From dS to AdS and back, JHEP, 12, 074 (2021) · Zbl 1521.81269 · doi:10.1007/JHEP12(2021)074
[57] Anninos, D.; Anous, T.; Freedman, DZ; Konstantinidis, G., Late-time Structure of the Bunch-Davies De Sitter Wavefunction, JCAP, 11, 048 (2015) · doi:10.1088/1475-7516/2015/11/048
[58] Deser, S.; Nepomechie, RI, Gauge Invariance Versus Masslessness in De Sitter Space, Annals Phys., 154, 396 (1984) · doi:10.1016/0003-4916(84)90156-8
[59] S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett.87 (2001) 031601 [hep-th/0102166] [INSPIRE]. · Zbl 0969.81601
[60] Deser, S.; Waldron, A., Partial masslessness of higher spins in (A)dS, Nucl. Phys. B, 607, 577 (2001) · Zbl 0969.81601 · doi:10.1016/S0550-3213(01)00212-7
[61] Deser, S.; Waldron, A., Stability of massive cosmological gravitons, Phys. Lett. B, 508, 347 (2001) · Zbl 0977.83021 · doi:10.1016/S0370-2693(01)00523-8
[62] Y.M. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].
[63] Costa, MS; Goncalves, V.; Penedones, J., Conformal Regge theory, JHEP, 12, 091 (2012) · Zbl 1397.81297 · doi:10.1007/JHEP12(2012)091
[64] L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
[65] Camporesi, R.; Higuchi, A., Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys., 35, 4217 (1994) · Zbl 0811.58061 · doi:10.1063/1.530850
[66] E.T. Akhmedov, U. Moschella, K.E. Pavlenko and F.K. Popov, Infrared dynamics of massive scalars from the complementary series in de Sitter space, Phys. Rev. D96 (2017) 025002 [arXiv:1701.07226] [INSPIRE].
[67] D. Marolf and I.A. Morrison, The IR stability of de Sitter: Loop corrections to scalar propagators, Phys. Rev. D82 (2010) 105032 [arXiv:1006.0035] [INSPIRE].
[68] Krotov, D.; Polyakov, AM, Infrared Sensitivity of Unstable Vacua, Nucl. Phys. B, 849, 410 (2011) · Zbl 1215.83032 · doi:10.1016/j.nuclphysb.2011.03.025
[69] A. Premkumar, Regulating Loops in dS, arXiv:2110.12504 [INSPIRE].
[70] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from Conformal Field Theory, JHEP, 10, 079 (2009) · doi:10.1088/1126-6708/2009/10/079
[71] Fitzpatrick, AL; Katz, E.; Poland, D.; Simmons-Duffin, D., Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP, 07, 023 (2011) · Zbl 1298.81212 · doi:10.1007/JHEP07(2011)023
[72] A. Gravina, Perturbative QFT in AdS, (2019).
[73] N. Levine and M.F. Paulos, Bootstrapping bulk locality. Part I: Sum rules for AdS form factors, arXiv:2305.07078 [INSPIRE].
[74] Karateev, D.; Kuhn, S.; Penedones, J., Bootstrapping Massive Quantum Field Theories, JHEP, 07, 035 (2020) · Zbl 1451.81315 · doi:10.1007/JHEP07(2020)035
[75] Correia, M.; Penedones, J.; Vuignier, A., Injecting the UV into the bootstrap: Ising Field Theory, JHEP, 08, 108 (2023) · Zbl 07748983 · doi:10.1007/JHEP08(2023)108
[76] Cardy, JL, The Central Charge and Universal Combinations of Amplitudes in Two-dimensional Theories Away From Criticality, Phys. Rev. Lett., 60, 2709 (1988) · doi:10.1103/PhysRevLett.60.2709
[77] Zamolodchikov, AB, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett., 43, 730 (1986)
[78] M. Loparco, C. Shen and J. Penedones, Quasinormal quantization in de Sitter spacetime, upcoming work.
[79] G.S. Ng and A. Strominger, State/Operator Correspondence in Higher-Spin dS/CFT, Class. Quant. Grav.30 (2013) 104002 [arXiv:1204.1057] [INSPIRE]. · Zbl 1269.83061
[80] Jafferis, DL, Quasinormal quantization in de Sitter spacetime, JHEP, 01, 004 (2015) · Zbl 1388.83121 · doi:10.1007/JHEP01(2015)004
[81] Sun, Z., Higher spin de Sitter quasinormal modes, JHEP, 11, 025 (2021) · Zbl 1521.81148 · doi:10.1007/JHEP11(2021)025
[82] Anninos, D.; Anous, T., A de Sitter Hoedown, JHEP, 08, 131 (2010) · Zbl 1290.83030 · doi:10.1007/JHEP08(2010)131
[83] D. Anninos, S.A. Hartnoll and D.M. Hofman, Static Patch Solipsism: Conformal Symmetry of the de Sitter Worldline, Class. Quant. Grav.29 (2012) 075002 [arXiv:1109.4942] [INSPIRE]. · Zbl 1253.83014
[84] Anninos, D.; Denef, F.; Law, YTA; Sun, Z., Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions, JHEP, 01, 088 (2022) · Zbl 1521.81335 · doi:10.1007/JHEP01(2022)088
[85] Carmi, D.; Di Pietro, L.; Komatsu, S., A Study of Quantum Field Theories in AdS at Finite Coupling, JHEP, 01, 200 (2019) · Zbl 1409.81113 · doi:10.1007/JHEP01(2019)200
[86] C. Sleight, Metric-like Methods in Higher Spin Holography, PoSModave2016 (2017) 003 [arXiv:1701.08360] [INSPIRE]. · Zbl 1378.81161
[87] Penedones, J., Writing CFT correlation functions as AdS scattering amplitudes, JHEP, 03, 025 (2011) · Zbl 1301.81154 · doi:10.1007/JHEP03(2011)025
[88] Karateev, D.; Kravchuk, P.; Simmons-Duffin, D., Harmonic Analysis and Mean Field Theory, JHEP, 10, 217 (2019) · Zbl 1427.81137 · doi:10.1007/JHEP10(2019)217
[89] Giombi, S.; Sleight, C.; Taronna, M., Spinning AdS Loop Diagrams: Two Point Functions, JHEP, 06, 030 (2018) · Zbl 1395.81219 · doi:10.1007/JHEP06(2018)030
[90] G. Lindblad, Brownian Motion of a Quantum Harmonic Oscillator, Rept. Math. Phys.10 (1976) 393 [INSPIRE]. · Zbl 0365.60071
[91] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D72 (2005) 043514 [hep-th/0506236] [INSPIRE].
[92] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[93] Fitzpatrick, AL; Kaplan, J., Analyticity and the Holographic S-Matrix, JHEP, 10, 127 (2012) · Zbl 1397.81300 · doi:10.1007/JHEP10(2012)127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.