×

Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling. (English) Zbl 1403.92049

Summary: The RANK-RANKL-OPG system is an essential signaling pathway involved in bone cell-cell communication, with ample evidence that modification of the RANK-RANKL-OPG signaling pathway has major effects on bone remodeling. The first focus of this paper is to demonstrate that a theoretical model of bone cell-cell interactions is capable of qualitatively reproducing changes in bone associated with RANK-RANKL-OPG signaling. To do this we consider either biological experiments or bone diseases related to receptor and/or ligand deficiencies, including RANKL over-expression, ablation of OPG production and/or RANK receptor modifications. The second focus is to investigate a wide range of possible therapeutic strategies for re-establishing bone homeostasis for various pathologies of the RANK-RANKL-OPG pathway. These simulations indicate that bone diseases associated with the RANK-RANKL-OPG pathway are very effective in triggering bone resorption compared to bone formation. These results align with Hofbauer’s “convergence hypothesis”, which states that catabolic bone diseases most effectively act through the RANK-RANKL-OPG system. Additionally, we demonstrate that severity of catabolic bone diseases strongly depends on how many components of this pathway are affected. Using optimization algorithms and the theoretical model, we identify a variety of successful “virtual therapies” for different disease states using both single and dual therapies.

MSC:

92C30 Physiology (general)
92C37 Cell biology
92C50 Medical applications (general)
Full Text: DOI

References:

[1] Aubin, J.E., Advances in the osteoblast lineage, Biochemistry and cell biology, 76, 899-910, (1998)
[2] Bell, N.H., RANK ligand and the regulation of skeletal remodeling, Journal of clinical investigation, 111, 1120-1122, (2003)
[3] Boyce, B.F.; Xing, L., Functions of RANKL/RANK/OPG in bone modeling and remodeling, Archives of biochemistry and biophysics, 473, 139-146, (2008)
[4] Brown, J.P., Prince, R.L., Deal, C., Recker, R.R., Kiel, D.P., de Gregorio, L.H., Hadji, P., Hofbauer, L.C., Alvaro-Gracia, J.M., Wang, H., Austin, M., Wagman, R.B., Newmark, R., Libanati, C., San Martin, J., Bone, H.G., 2009. Comparison of the effect of Denosumab and Alendronate on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. Journal of Bone and Mineral Research 24, 153-161.; Brown, J.P., Prince, R.L., Deal, C., Recker, R.R., Kiel, D.P., de Gregorio, L.H., Hadji, P., Hofbauer, L.C., Alvaro-Gracia, J.M., Wang, H., Austin, M., Wagman, R.B., Newmark, R., Libanati, C., San Martin, J., Bone, H.G., 2009. Comparison of the effect of Denosumab and Alendronate on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. Journal of Bone and Mineral Research 24, 153-161.
[5] Defranoux, N.A.; Stokes, C.L.; Young, D.L.; Kahn, A.J., In silico modeling and simulation of bone biology: a proposal, Journal of bone and mineral research, 20, 1079-1084, (2005)
[6] Hofbauer, L.C.; Schoppet, M., Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases, Jama, 292, 490-495, (2004)
[7] Hofbauer, L.C.; Khosla, S.; Dunstan, C.R.; Laycey, D.L.; Boyle, W.J.; Riggs, B.L., The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption, Journal of bone and mineral research, 15, 2-12, (2000)
[8] Hofbauer, L.C.; Kühne, C.A.; Viereck, V., The OPG/RANKL/RANK system in metabolic bone diseases, Journal of musculoskeletal and neuronal interactions, 4, 268-275, (2004)
[9] Hsu, H.; Lacey, D.L.; Dunstan, C.R.; Solovyev, I.; Colombero, A.; Timms, E.; Tan, H-L.; Elliott, G.; Kelley, M.J.; Sarosi, I.; Wang, L.; Xia, X.-Z.; Elliott, R.; Chiu, L.; Black, T.; Scully, S.; Capparelli, C.; Morony, S.; Shimamoto, G.; Bass, M.B.; Boyle, W.J., Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand, Proceedings of the national Academy sciences, 96, 3540-3545, (1999)
[10] Kapur, R.P.; Yao, Z.; Iida, M.; Clarke, C.M.; Doggett, B.; Xing, L.; Boyce, BF., Malignant autosomal recessive osteopetrosis caused by spontaneous mutation of murine rank, Journal of bone and mineral research, 19, 1689-1697, (2004)
[11] Komarova, S.V.; Smith, R.J.; Dixon, S.J.; Sims, S.M.; Wahl, L.M., Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling, Bone, 33, 206-215, (2003)
[12] Lacey, D.L.; Timms, E.; Tan, H-L.; Kelley, M.J.; Dunstan, C.R.; Burgess, T.; Elliott, R.; Colombero, A.; Elliott, G.; Scully, S.; Hsu, H.; Sullivan, J.; Hawkins, N.; Davy, E.; Capparelli, C.; Eli, A.; Qian, Y-X.; Kaufman, S.; Sarosi, I.; Shalhoub, V.; SenaldI, G.; Guo, J.; Delaney, J.; Boyle, W.J., Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation, Cell, 93, 165-176, (1998)
[13] Lemaire, V.; Tobin, F.L.; Greller, L.D.; Cho, C.R.; Suva, L.J., Modeling the interactions between osteoblast and osteoclast activities in bone remodeling, Journal of theoretical biology, 229, 293-309, (2004) · Zbl 1440.92028
[14] Martin, T.J., Paracrine regulation of osteoclast formation and activity: milestones in discovery, Journal of musculoskeletal and neuronal interactions, 4, 243-253, (2004)
[15] Mizuno, A.; Amizuka, N.; Irie, K.; Murakami, A.; Fujise, N.; Kanno, T.; Sato, Y.; Nakagawa, N.; Yasuda, H.; Mochizuki, S.; Gomibuchi, T.; Yano, K.; Shima, N.; Washida, N.; Tsuda, E.; Morinaga, T.; Higashio, K.; Ozawa, H., Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin, Biochemical and biophysical research communications, 247, 610-615, (1998)
[16] Parfitt, A.M., Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression, Bone, 30, 5-7, (2002)
[17] Pettit, A.R.; Ji, H.; von Stechow, D.; Müller, R.; Goldring, S.R.; Choi, Y.; Benoist, C.; Gravallese, E.M., TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis, American journal of pathology, 159, 1689-1699, (2001)
[18] Pivonka, P.; Zimak, J.; Smith, D.W.; Gardiner, B.S.; Dunstan, C.R.; Sims, N.A.; John Martin, T.; Mundy, G.R., Model structure and control of bone remodeling: a theoretical study, Bone, 43, 249-263, (2008)
[19] Riggs, B.L.; Parfitt, A.M., Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling, Journal of bone and mineral research, 20, 177-184, (2005)
[20] Rodan, G.A.; Martin, T.J., Role of osteoblasts in hormonal control of bone resorption—a hypothesis, Calcified tissue international, 33, 349-351, (1981)
[21] Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.-S.; Luthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; Shimamoto, G.; DeRose, M.; Elliott, R.; Colombero, A.; Tan, H-L.; Trail, G.; Sullivan, J.; Davy, E.; Bucay, N.; Renshaw-Gegg, L.; Hughes, T.M.; Hill, D.; Pattison, W.; Campbell, P.; Sander, S.; Van, G.; Tarpley, J.; Derby, P.; Lee, R.; Boyle, W.J., Osteoprotegerin: a novel secreted protein involved in the regulation of bone density, Cell, 89, 309-319, (1997)
[22] Teitelbaum, S.L., 2000. Bone resorption by osteoclasts. Science, 289, 1504-1508.; Teitelbaum, S.L., 2000. Bone resorption by osteoclasts. Science, 289, 1504-1508.
[23] Theoleyre, S.; Wittrant, Y.; Tat, S.K.; Fortun, Y.; Redini, F.; Heymann, D., The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling, Cytokine & growth factor reviews, 15, 457-475, (2004)
[24] Vega, D.; Maalouf, N.M.; Sakhaee, K., The role of receptor activator of nuclear factor-κB (RANK)/RANK ligand/osteoprotegerin: clinical implications, Journal of clinical endocrinology & metabolism, 92, 4514-4521, (2007)
[25] Yamazaki, H.; Sasaki, T., Effects of osteoprotegerin administration on osteoclast differentiation and trabecular bone structure in osteoprotegerin-deficient mice, Journal of electron microscopy, 54, 467-477, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.