×

Two-phase hydrodynamics in a miniature direct methanol fuel cell. (English) Zbl 1176.76002

Summary: We present controlled experiments on a miniature direct methanol fuel cell (DMFC) to study the effects of methanol flow rate, current density, and void fraction on pressure drop across the DMFC anode. We also present an experimental technique to measure void fraction, liquid slug length, and velocity of the two-phase slug flow exiting the DMFC. For our channel geometry in which the diameter of the largest inscribed sphere \((a)\) is \(500 \mu \)m, pressure drop scales with the number of gas slugs in the channel, surface tension, and \(a.\) This scaling demonstrates the importance of capillary forces in determining the hydrodynamic characteristics of the DMFC anode. This work is aimed at aiding the design of fuel pumps and anode flow channels for miniature DMFC systems.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
78A57 Electrochemistry
76D45 Capillarity (surface tension) for incompressible viscous fluids
Full Text: DOI

References:

[1] Kim, Y. J.; Bae, B.; Scibioh, M. A.; Cho, E.; Ha, H. Y.: Behavioral pattern of a monopolar passive direct methanol fuel cell stack, J. power sources 157, No. 1, 253-259 (2006)
[2] Guo, Z.; Cao, Y.: A passive fuel delivery system for portable direct methanol fuel cells, J. power sources 132, No. 1 – 2, 86-91 (2004)
[3] Drew, D. A.: Mathematical modeling of two-phase flow, Annu. rev. Fluid mech. 15, No. 1, 261-291 (1983) · Zbl 0569.76104
[4] Kleinstreuer, C.: Two-phase flow: theory and applications, (2003) · Zbl 1127.76003
[5] Chisholm, D.: A theoretical basis for the lockhart – Martinelli correlation for two-phase flow, In. J. Heat mass transfer 10, No. 12, 1767-1778 (1967)
[6] Litster, S.; Djilali, N.: Two-phase transport in porous gas diffusion electrodes, Transport phenomena in fuel cells (2005) · Zbl 1137.76816
[7] Pasaogullari, U.; Wang, C. Y.: Two-phase modeling and flooding prediction of polymer electrolyte fuel cells, J. electrochem. Soc. 152, No. 2, A380-A390 (2005)
[8] Pasaogullari, U.; Wang, C. Y.: Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells, Electrochim. acta 49, No. 25, 4359-4369 (2004)
[9] Weber, A. Z.; Darling, R. M.; Newman, J.: Modeling two-phase behavior in pefcs, J. electrochem. Soc. 151, No. 10, A1715-A1727 (2004)
[10] Liu, X.; Guo, H.; Ma, C.: Water flooding and two-phase flow in cathode channels of proton exchange membrane fuel cells, J. power sources 156, No. 2, 267-280 (2006)
[11] Trabold, T. A.; Owejan, J. P.; Jacobson, D. L.; Arif, M.; Huffman, P. R.: In situ investigation of water transport in an operating PEM fuel cell using neutron radiography. Part 1. Experimental method and serpentine flow field results, In. J. Heat mass transfer 49, No. 25 – 26, 4712-4720 (2006) · Zbl 1370.76176
[12] Zhang, J. B.; Kramer, D.; Shimoi, R.; Ona, Y.; Lehmann, E.; Wokaun, A.; Shinohara, K.; Scherer, G. G.: In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging. Part B. Material variations, Electrochim. acta 51, No. 13, 2715-2727 (2006)
[13] Liu, X.; Guo, H.; Ye, F.; Ma, C. F.: Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells, Electrochim. acta 52, No. 11, 3607-3614 (2007)
[14] Yan, T. Z.; Jen, T. -C.: Two-phase flow modeling of liquid-feed direct methanol fuel cell, In. J. Heat mass transfer 51, No. 5 – 6, 1192-1204 (2008) · Zbl 1137.80009 · doi:10.1016/j.ijheatmasstransfer.2007.03.007
[15] Wang, Z. H.; Wang, C. Y.: Mathematical modeling of liquid-feed direct methanol fuel cells, J. electrochem. Soc. 150, No. 4, A508-A519 (2003)
[16] Kulikovsky, A. A.: Two-dimensional numerical modelling of a direct methanol fuel cell, J. appl. Electrochem. 30, No. 9, 1005-1014 (2000)
[17] Xu, C.; Zhao, T. S.; Ye, Q.: Effect of anode backing layer on the cell performance of a direct methanol fuel cell, Electrochim. acta 51, No. 25, 5524-5531 (2006)
[18] Argyropoulos, P.; Scott, K.; Taama, W. M.: Pressure drop modelling for liquid feed direct methanol fuel cells. Part 1. Model development, Chem. eng. J. 73, No. 3, 217-227 (1999)
[19] Yang, H.; Zhao, T. S.; Ye, Q.: Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells, J. power sources 142, No. 1 – 2, 117-124 (2005)
[20] Mishima, K.; Hibiki, T.: Some characteristics of air – water two-phase flow in small diameter vertical tubes, Int. J. Multiphase flow 22, No. 4, 703-712 (1996) · Zbl 1135.76498 · doi:10.1016/0301-9322(96)00010-9
[21] Lu, G. Q.; Wang, C. Y.: Electrochemical and flow characterization of a direct methanol fuel cell, J. power sources 134, No. 1, 33-40 (2004)
[22] Wallis, G. B.: One dimensional two phase flow, (1969) · Zbl 0174.29503
[23] Argyropoulos, P.; Scott, K.; Taama, W. M.: Carbon dioxide evolution patterns in direct methanol fuel cells, Electrochim. acta 44, No. 20, 3575-3584 (1999)
[24] Yang, H.; Zhao, T. S.; Ye, Q.: In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields, J. power sources 139, No. 1 – 2, 79-90 (2005)
[25] Wong, H.; Radke, C. J.; Morris, S.: The motion of long bubbles in polygonal capillaries. Part 1. Thin films, J. fluid mech. 292, 71-94 (1995) · Zbl 0843.76018 · doi:10.1017/S0022112095001443
[26] Wong, H.; Radke, C. J.; Morris, S.: The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow, J. fluid mech. 292, 95-110 (1995) · Zbl 0843.76018 · doi:10.1017/S0022112095001443
[27] Bretherton, F. P.: The motion of long bubbles in tubes, J. fluid mech. Digital arch. 10, 166-188 (1961) · Zbl 0096.20702 · doi:10.1017/S0022112061000160
[28] Buie, C. R.; Kim, D.; Litster, S.; Santiago, J. G.: An electro-osmotic fuel pump for direct methanol fuel cells, Electrochem. solid state lett. 10, No. 11, B196-B200 (2007)
[29] Lundin, M. D.; Mccready, M. J.: Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility, J. power sources 172, No. 2, 553-559 (2007)
[30] Yen, T. J.; Fang, N.; Zhang, X.; Lu, G. Q.; Wang, C. Y.: A micro methanol fuel cell operating at near room temperature, Appl. phys. Lett. 83, No. 19, 4056-4058 (2003)
[31] Yang, H.; Zhao, T. S.: Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells, Electrochim. acta 50, No. 16 – 17, 3243-3252 (2005)
[32] Eccarius, S.; Garcia, B. L.; Hebling, C.; Weidner, J. W.: Experimental validation of a methanol crossover model in DMFC applications, J. power sources 179, No. 2, 723-733 (2008)
[33] Liu, F.; Wang, C. -Y.: Water and methanol crossover in direct methanol fuel cells: effect of anode diffusion media, Electrochim. acta 53, No. 17, 5517-5522 (2008)
[34] Jiang, R. Z.; Rong, C.; Chu, D.: Fuel crossover and energy conversion in lifetime operation of direct methanol fuel cells, J. electrochem. Soc. 154, No. 1, B13-B19 (2007)
[35] Han, J.; Liu, H.: Real time measurements of methanol crossover in a DMFC, J. power sources 164, No. 1, 166-173 (2007)
[36] Fuerstman, M. J.; Lai, A.; Thurlow, M. E.; Shevkoplyas, S. S.; Stone, H. A.; Whitesides, G. M.: The pressure drop along rectangular microchannels containing bubbles, Lab chip, No. 7, 1479-1489 (2007)
[37] Buie, C. R.; Santiago, J. G.: Model and experimental study of hydrodynamic coupling between a fuel pump and a direct methanol fuel cell, ECS trans. (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.