×

Two-phase flow modeling of liquid-feed direct methanol fuel cell. (English) Zbl 1137.80009

Summary: A two-phase flow model was developed for liquid-feed methanol fuel cells (DMFC) to evaluate the effects of various operating parameters on the DMFC performance. In this study, a general homogeneous two-dimensional model is described in details for both porous layers and fluid channels. This two-dimensional general model accounts for fluid flow, electrochemical kinetics, current density distribution, hydrodynamics, multi-component transport, and methanol crossover. It starts from basic transport equations including mass conservation, momentum transport, energy balance, and species concentration conservation in different elements of the fuel cell sandwich, as well as the equations for the phase potential in the membrane and the catalyst layers. These governing equations are coupled with chemical reaction kinetics by introducing various source terms. It is found that all these equations are in a very similar form except the source terms. Based on this observation, all the governing equations can be solved using the same numerical formulation in the single domain without prescribing the boundary conditions at the various interfaces between the different elements of the fuel cell. The numerical simulation results, such as velocity field, local current density distribution, and species concentration variation along the flow channel, under various operation conditions are computed. The performance of the DMFC affected by various parameters such as temperature, pressure, and methanol concentration is investigated in this paper. The numerical results are further validated with available experimental data from the published literatures.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
80A30 Chemical kinetics in thermodynamics and heat transfer
76T10 Liquid-gas two-phase flows, bubbly flows
78A55 Technical applications of optics and electromagnetic theory
80A32 Chemically reacting flows
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Sukla, A. K.; Ravikumar, M. K.; Gandhi, K. S.: Direct methanol fuel cells for vehicular applications, J. solid state electrochem. 2, 117 (1998)
[2] Scott, K.; Taama, W.; Cruickshank, J.: Performance of a direct methanol fuel cell, J. appl. Electrochem. 28, 289 (1998)
[3] Lin, W. F.; Wang, J. T.; Savinell, R. F.: On-line FTIR spectroscopic investigations of methanol oxidation in a direct methanol fuel cell, J. electrochem. Soc. 144, 1917 (1997)
[4] Cleghorn, S. J. C.; Ren, X.; Springer, T. E.; Wilson, M. S.; Zawodzinski, C.; Zawodzinski, T. A.; Gottesfeld, S.: PEM fuel cells for transportation and stationary power generation applications, Int. J. Hydrogen energy 22, 1137 (1997)
[5] Guran, B.; Viswanathan, R.; Liu, R. X.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S.: Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation, J. phys. Chem., B 102, 9997 (1998)
[6] Watanabe, M.; Uchida, M.; Motoo, S.: Preparation of highly dispersed pt+Ru alloy clusters and the activity for the electrooxidation, J. electroanal. Chem. 229, 395 (1987)
[7] Hamnett, A.: Mechanism and electrocatalysis in the direct methanol fuel cell, Catal. today 38, 445 (1997)
[8] Markovic, N. M.; Gasteiger, H. A.; Ross, P. N.; Jiang, X. D.; Villegas, I.; Weaver, M. J.: Electrooxidation mechanisms of methanol and formic acid on pt – ru alloy surfaces, Electrochim. acta 40, 91 (1995)
[9] Thomas, S. C.; Ren, X.; Gottesfeld, S.: Influence of ionomer content in catalyst layers on direct methanol fuel cell performance, J. electrochem. Soc. 146, 4354 (1999)
[10] Arico, S.; Creti, P.; Modica, E.; Monforte, G.; Baglio, V.; Antonucci, V.: Investigation of direct methanol fuel cells based on unsupported pt – ru anode catalysts with different chemical properties, Electrochim. acta 45, 4319 (2000)
[11] Ravikumar, M. K.; Shukla, A. K.: Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell, J. electrochem. Soc. 143, 2601 (1996)
[12] Narayanan, S.R., Frank, H., Jeffries-Nakamura, B., Smart, M., Chun, W., Halpert, G., Kosek, J., Cropley, C., 1995. In: Gottesfeld, S., Halpert, G., Landgrebe, A. (Eds.), Proton Conducting Membrane Fuel Cells I, The Electrochemical Society Proceedings Series, Pennington, NJ.
[13] Verbrugge, M. W.: Methanol diffusion in perfluorinated ion-exchange membranes, J. electrochem. Soc. 136, 417-423 (1989)
[14] Scott, K.; Tamma, W.; Cruickshank, J.: Performance and modeling of a direct methanol solid polymer electrolyte fuel cell, J. power source 65, 159 (1997)
[15] Baxter, S. F.; Battaglia, V. S.; White, R. E.: Methanol fuel cell model: anode, J. electrochem. Soc. 146, 437 (2000)
[16] Wang, J.T., Savinell, R.F., 1994. In: Srinivasan, S., Macdonald, D.D., Khandkar A.C. (Eds.), Electrode Materials and Processes for Energy Conversion and Storage, PV 94-23, The Electrochemical Society Proceedings Series, Pennington, NJ, p. 326.
[17] Dohle, H.; Divisek, J.; Jung, R.: Process engineering of the direct methanol fuel cell, J. power sources 86, 469 (2000)
[18] Kulikovsky, A.; Divisek, J.; Kornyshev, A. A.: Two-dimensional simulation of direct methanol fuel cells, a new type of current collector, J. electrochem. Soc. 147, 953 (2000)
[19] Kulikovsky, A. A.: Two-dimensional numerical modelling of a direct methanol fuel cell, J. appl. Electrochem. 30, 1005 (2000)
[20] Wang, Z. H.; Wang, C. Y.: Mathematical modeling of liquid-feed direct methanol fuel cells, J. electrochem. Soc. 150, No. 4, 508-519 (2003)
[21] Wang, Z. H.; Wang, C. Y.; Chen, K. S.: Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells, J. power sources 94, 40-50 (2001)
[22] Sundmacher, Kai; Scott, Keith: Direct methanol polymer electrolyte fuel cell: analysis of charge and mass transfer in the vapor – liquid – solid system, Chem. engng. Sci. 54, 2927-2936 (1999)
[23] Ren, X.; Springer, T. E.; Zawodzinski, T. A.; Gottesfeld, S.: Methanol transport through nation membranes. Electro-osmotic drag effects on potential step measurements, J. electrochem. Soc. 147, 466 (2000)
[24] Kaviany, M.: Principles of heat transfer in porous media, (1995) · Zbl 0889.76002
[25] Leverett, M. C.: Capillary behavior in porous solid, Trans. AIME 142, 152-169 (1941)
[26] Mcglashan, M. L.; Williamson, A. G.: Isothermal liquid – vapor equilibria for system methanol – water, J. chem. Engng. data 21, 196 (1976)
[27] Triplett, K. A.; Ghiaasiaan, S. M.; Abdel-Khalik, S. I.; Lemouel, A.; Cord, B. N. Mc-: Gas – liquid two-phase flow in microchannels, part II: Void fraction and pressure drop, Int. J. Multiphase flow 25, 395 (1999) · Zbl 1137.76762 · doi:10.1016/S0301-9322(98)00055-X
[28] Fukano, T.; Kariyasaki, A.: Characteristics of gas – liquid two-phase flow in a capillary tube, Nucl. engng. Des 141, 59 (1993)
[29] Isbin, H.S., Moen, R.H., Wickey, R.O., Mosher, D.R., Larson, H.C., 1958. In: Two-phase Steam Water Pressure Drops, Nuclear Science and Engineering, Conference, Chicago.
[30] Dukler, A. E.; Wicks, M.; Cleveland, R. G.: Frictional pressure drops in two-phase flow, Aiche J. 10, 44 (1964)
[31] Jen, T. C.; Yan, T.; Chan, S. -H.: Chemical reaction transport phenomena in a PEM fuel cell, Int. J. Heat mass transfer 46, 4157-4168 (2003) · Zbl 1065.76621 · doi:10.1016/S0017-9310(03)00253-9
[32] Scott, K.; Taama, W. M.; Kramer, S.; Argyropoulos, P.; Sundmacher, K.: Limiting current behavior of the direct methanol fuel cell, Electrochim. acta 45, 945-957 (1999)
[33] Ren, X.; Zelenay, P.; Thomas, S.; Davey, J.; Gottesfeld, S.: Recent advances in direct methanol fuel cells at los alamos national laboratory, J. power sources 86, 111 (2000)
[34] Nguyen, T. V.; White, R. E.: A water and heat management model for proton-exchange-membrane fuel cells, J. electrochem. Soc. 140, 2178 (1993)
[35] Scott, K.; Taama, W. M.; Argyropoulos, P.; Sundmacher, K.: The impact of mass transfer and methanol crossover on the direct methanol fuel cell, J. power source 83, 204-216 (1999)
[36] Baldauf, M.; Preidel, W.: Status of the development of a direct methanol fuel cell, J. power sources 84, 161-166 (1999)
[37] Narayanan, S. R.; Kindler, A.; Jeffries-Nakamura, B.; Chun, W.; Frank, H.; Smart, M.; Valdez, T. I.; Surampudi, S.; Halpert, G.: Recent advances in PEM liquid-feed direct methanol fuel cell, Annu. battery conf. Appl. adv. 11, 113 (1996)
[38] Suranpudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, A.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.: Advances in direct oxidation methanol fuel cells, J. power sources 47, 377-385 (1994)
[39] Jung, D. H.; Lee, C. H.; Kim, C. S.; Shin, D. R.: Performance of a direct methanol polymer electrolyte fuel cell, J. power sources 71, 169-173 (1998)
[40] Scott, K.; Argyropoulos, P.; Sundmacher, K.: A model for the liquid feed direct methanol fuel cell, J. electroanal. Chem. 477, 97-110 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.