×

Liouvillian integrability and the Poincaré problem for nonlinear oscillators with quadratic damping and polynomial forces. (English) Zbl 1482.34003

The upper bound on the degrees of irreducible Darboux polynomials associated to the ordinary differential equations \[ x_{tt}+x_{t}^2+x_{t}+f(x)=0\text{ with }f(x)\in\mathbb{C}[x]\backslash\mathbb{C}\text{ and }\neq 0 \] is derived. The Poincaré problem for dynamical systems is solved. Two useful tables on irreducible Darboux poynomials and on Liouvillian first integrals of dynamical systems are presented.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C45 Invariant manifolds for ordinary differential equations
Full Text: DOI

References:

[1] Bruno, AD, Asymptotic behaviour and expansions of solutions of an ordinary differential equation, Rus Math Surv., 59, 3, 429-81 (2004) · Zbl 1068.34054 · doi:10.1070/RM2004v059n03ABEH000736
[2] Christopher, C., Invariant algebraic curves and conditions for a centre, Proc R Soc Edinb: Sect A Math, 124, 6, 1209-29 (1994) · Zbl 0821.34023 · doi:10.1017/S0308210500030213
[3] Cveticanin, L., Oscillator with strong quadratic damping force, Publications de L’Institut Mathematique Nouv Sér, 85, 99, 119-30 (2009) · Zbl 1224.34107 · doi:10.2298/PIM0999119C
[4] Cveticanin, L.; Zukovic, M.; Mester, GY; Biro, I.; Sarosi, J., Oscillators with symmetric and asymmetric quadratic nonlinearity, Acta Mech, 227, 6, 1727-42 (2016) · Zbl 1341.34044 · doi:10.1007/s00707-016-1582-9
[5] Darboux, G., De l’emploi des solutions particuliéres algébriques dans l’intégration des systèmes d’équations différentielles algébriques, Acad Sci Paris C R, 86, 1012-4 (1878) · JFM 10.0214.04
[6] Demina, MV, Invariant algebraic curves for Liénard dynamical systems revisited, Appl Math Lett, 84, 42-8 (2018) · Zbl 1391.37041 · doi:10.1016/j.aml.2018.04.013
[7] Demina, MV, Invariant surfaces and Darboux integrability for non-autonomous dynamical systems in the plane, J Phys A: Math Theor, 51, 505202 (2018) · Zbl 1411.70025 · doi:10.1088/1751-8121/aaecca
[8] Demina, MV, Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial differential systems, Phys Lett A, 382, 20, 1353-60 (2018) · Zbl 1398.34050 · doi:10.1016/j.physleta.2018.03.037
[9] Demina, MV; Sinelshchikov, DI, Integrability properties of cubic Liénard oscillators with linear damping, Symmetry, 11, 1378 (2019) · doi:10.3390/sym11111378
[10] Demina, MV; Sinelshchikov, DI, On the integrability of some forced nonlinear oscillators, Int J Non-Linear Mech, 121, 103439 (2020) · doi:10.1016/j.ijnonlinmec.2020.103439
[11] Demina MV, Valls C. 2019. On the Poincaré problem and Liouvillian integrability of quadratic Liénard differential equations. Proc R Soc Edinb Sec A: Math. doi:10.1017/prm.2019.63. · Zbl 1465.34038
[12] Demina, MV; Valls, C., Classification of invariant algebraic curves and nonexistence of algebraic limit cycles in quadratic systems from family (I) of the Chinese classification, Int J Bifurc Chaos, 30, 4, 2050056 (2020) · Zbl 1446.34047 · doi:10.1142/S021812742050056X
[13] Giné, J.; Valls, C., Liouvillian integrability of a general Rayleigh-Duffing oscillator, J Nonlinear Math Phys, 26, 169-87 (2019) · Zbl 1471.34007 · doi:10.1080/14029251.2019.1591710
[14] Gontsov, RR; Goryuchkina, IV, On the convergence of generalized power series satisfying an algebraic ODE, Asymptot Anal, 93, 4, 311-25 (2015) · Zbl 1327.34014 · doi:10.3233/ASY-151297
[15] Goriely, A., Integrability and nonintegrability of dynamical systems (2001), Singapore: World Scientific, Singapore · Zbl 1002.34001 · doi:10.1142/3846
[16] Ilyashenko Y, Yakovenko S. 2008. Lectures on analytic differential equations, vol 86. Graduate Studies in Mathematics, American Mathematical Society. ISBN 978-0-8218-3667-5. · Zbl 1186.34001
[17] Kovacic, I.; Rakaric, Z., Study of oscillators with a non-negative real-power restoring force and quadratic damping, Nonlinear Dyn, 64, 3, 293-304 (2011) · doi:10.1007/s11071-010-9861-9
[18] Lai, SK; Chow, KW, Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity, Phys Scr, 85, 4, 1-6 (2012) · Zbl 1310.34046 · doi:10.1088/0031-8949/85/04/045006
[19] Linz, SJ; Hanggi, P., Effect of vertical vibrations on avalanches in granular systems, Phys Rev E, 50, 5, 3464-9 (1994) · doi:10.1103/PhysRevE.50.3464
[20] Linz, SJ; Hanggi, P., Minimal model for avalanches in granular systems, Phys Rev E, 51, 3, 2538-42 (1994) · doi:10.1103/PhysRevE.51.2538
[21] Marinca V, Herişanu N. The oscillator with linear and cubic elastic restoring force and quadratic damping. Dynamical systems: theoretical and experimental analysis. In: Awrejcewicz J, editors. Switzerland: Springer International Publishing; 2016. p. 215-24. doi:10.1007/978-3-319-42408-8-18. · Zbl 1397.70027
[22] Olvera, A.; Prado, E.; Czitrom, S., Parametric resonance in an oscillating water column, J Eng Math, 57, 1, 1-21 (2007) · Zbl 1107.76013 · doi:10.1007/s10665-006-9048-z
[23] Poincaré, H., Sur l’intégration algébrique des équations differentielles du premier ordre et du premier degré, Rend Circ Mat Palermo, 5, 161-91 (1891) · Zbl 0581.41028 · doi:10.1007/BF03015693
[24] Prelle, MJ; Singer, MF, Elementary first integrals of differential equations, Trans Am Math Soc, 279, 1, 215-29 (1983) · Zbl 0527.12016 · doi:10.1090/S0002-9947-1983-0704611-X
[25] Singer, MF, Liouvillian first integrals of differential equations, Trans Am Math Soc, 333, 2, 673-88 (1992) · Zbl 0756.12006 · doi:10.1090/S0002-9947-1992-1062869-X
[26] Tiwari, AK; Pandey, SN; Senthilvelan, M.; Lakshmanan, M., Classification of Lie point symmetries for quadratic Liénard type equation \(\ddot x+f(x){\dot x}^2+g(x)= 0\) ẍ + f(x)ẋ2 + g(x) = 0, J Math Phys, 54, 5, 053506 (2013) · Zbl 1295.34049 · doi:10.1063/1.4803455
[27] Zhang, X., Integrability of dynamical systems: algebra and analysis (2017), Singapore: Springer, Singapore · Zbl 1373.37053 · doi:10.1007/978-981-10-4226-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.