×

Energy distribution of harmonic 1-forms and Jacobians of Riemann surfaces with a short closed geodesic. (English) Zbl 1473.30023

Let \(S_t\) be a continuous family of compact hyperbolic Riemann surfaces of genus \(g\ge 2\). Here \(t\) is the length of the shortest closed geodesic of \(S_t\). The authors study the energy distribution of the harmonic 1-forms on \(S_t\) as \(t\to 0\). To describe the family \(S_t\) more exactly, two approaches are used; they are based on the Fenchel-Nielsen coordinates and the grafting construction.

Two fundamentally different cases are studied. If the shortest closed geodesic separates \(S_t\) into two parts, then we have the separating case; the opposite situation is called non-separating case. In the separating case, the limiting surface is a noncompact hyperbolic surface of genus \(g - 1\) with two cusps. In the separating case, the authors obtain a pair of noncompact hyperbolic surfaces, each with one cusp. The asymptotical behavior is described in terms of the Gram-period matrix corresponding to the canonical cohomology basis in the space of \(1\)-differential forms on \(S_t\).

MSC:

30F10 Compact Riemann surfaces and uniformization
14H40 Jacobians, Prym varieties
14H42 Theta functions and curves; Schottky problem
30F15 Harmonic functions on Riemann surfaces
30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)

References:

[1] Axler, S., Harmonic functions from a complex analysis viewpoint, Am. Math. Mon., 93, 4, 246-258 (1986) · Zbl 0604.31001 · doi:10.1080/00029890.1986.11971799
[2] Bers, L.: Spaces of degenerating Riemann surfaces. In: Discontinuous Groups and Riemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 43-55. Ann. of Math. Studies, No. 79. Princeton University Press, Princeton (1974) · Zbl 0294.32016
[3] Buser, P.; Makover, E.; Muetzel, B.; Silhol, R., Quasiconformal embeddings of Y-pieces, Comput. Methods Funct. Theory, 14, 2-3, 431-452 (2014) · Zbl 1307.30043 · doi:10.1007/s40315-014-0062-2
[4] Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics, vol. 106, p. xiv+454. Birkhäuser Boston, Inc., Boston, MA (1992) · Zbl 0770.53001
[5] Colbois, B.; Courtois, G., Les valeurs propres inférieures à \(\frac{1}{4}\) des surfaces de Riemann de petit rayon d’injectivité, Comment. Math. Helv., 64, 349-362 (1989) · Zbl 0684.53040 · doi:10.1007/BF02564681
[6] Chang, F-R, On the diameters of compact Riemann surfaces, Proc. Am. Math. Soc., 65, 2, 274-276 (1977) · Zbl 0347.30016 · doi:10.1090/S0002-9939-1977-0447556-8
[7] Dodziuk, J., McGowan, J., Perry, P.: Harmonic representatives forcuspidal cohomology classes. In: Number Theory, Analysis and Geometry, pp. 161-168. Springer, New York. doi:10.1007/978-1-4614-1260-1_8 · Zbl 1250.30037
[8] Dodziuk, J.: Correction to “Harmonic representatives for cuspidalcohomology classes”. arXiv:1211.3490 (2012)
[9] Dumas, D.; Wolf, M., Projective structures, grafting and measured laminations, Geom. Topol., 12, 1, 351-386 (2008) · Zbl 1147.30030 · doi:10.2140/gt.2008.12.351
[10] Falliero, T., Dégénérescence de séries d’Eisenstein hyperboliques, Math. Ann., 339, 2, 341-375 (2007) · Zbl 1154.30031 · doi:10.1007/s00208-007-0116-0
[11] Farkas, HM; Kra, I., Riemann Surfaces (1992), New York: Springer, New York · Zbl 0764.30001 · doi:10.1007/978-1-4612-2034-3
[12] Fay, J.D.: Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics, vol. 352, p. iv+137. Springer, Berlin, New York (1973) · Zbl 0281.30013
[13] Grushevsky, S.; Krichever, IM; Norton, C., Real-normalized differentials: limits on stable curves, Russ. Math. Surv., 74, 2, 265-324 (2019) · Zbl 1437.14033 · doi:10.1070/RM9877
[14] Hu, X.; Norton, C., General variational formulas for abelian differentials, Int. Math. Res. Not. (2018) · Zbl 1453.30002 · doi:10.1093/imrn/rny106
[15] Imayoshi, Y., Taniguchi, M.: An introduction to Teichmüller spaces. In: Translated and revised from the Japanese by the authors. Springer, Tokyo (1992) · Zbl 0754.30001
[16] McMullen, CT, Complex earthquakes and Teichmüller theory, J. Am. Math. Soc., 11, 2, 283-320 (1998) · Zbl 0890.30031 · doi:10.1090/S0894-0347-98-00259-8
[17] Minda, CD, Square integrable differentials on Riemann surfaces and quasiconformal mappings, Trans. Am. Math. Soc., 195, 365-381 (1974) · Zbl 0265.30021 · doi:10.1090/S0002-9947-1974-0340589-3
[18] Muetzel, B., The Jacobian of a Riemann surface and the geometry of the cut locus of simple closed geodesics, Ann. Acad. Sci. Fenn. Math., 42, 2, 693-721 (2017) · Zbl 1372.14025 · doi:10.5186/aasfm.2017.4242
[19] Yamada, A., Precise variational formulas for abelian differentials, Kodai Math. J., 3, 1, 114-143 (1980) · Zbl 0451.30039 · doi:10.2996/kmj/1138036124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.