×

Primal-dual on-the-fly reduced-order modeling for large-scale transient dynamic topology optimization. (English) Zbl 07875038

Summary: Managing large-scale topology optimization under dynamic loading poses significant computational and storage challenges as against static loading. In order to fill this gap in computational cost, this paper proposes a reduced order modeling strategy that involves constructing discrete basis functions (modes) in adaptive fashion for both the primal as well as dual problem in topology optimization of transient dynamic systems. The projection bases are enriched based on the residual threshold of the corresponding systems. We address the computational cost and scalability of the ROM learning and updating phases. The approach is validated using 2D and 3D benchmark problems, by comparing alternative reduced-order-sensitivity formulations and projection basis update schemes.

MSC:

90-XX Operations research, mathematical programming
93-XX Systems theory; control
Full Text: DOI

References:

[1] Xie, Y., Generalized topology optimization for architectural design, Archit. Intell., 1, 1, 1-11, 2022
[2] Meng, L.; Zhang, W.; Quan, D., From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap, Arch. Comput. Methods Eng., 27, 805-830, 2020
[3] Aage, N.; Andreassen, E.; Lazarov, B. S., Giga-voxel computational morphogenesis for structural design, Nature, 550, 7674, 84-86, 2017
[4] Baandrup, M.; Sigmund, O.; Polk, H., Closing the gap towards super-long suspension bridges using computational morphogenesis, Nature Commun., 11, 1, 2735, 2020
[5] Duan, Z.; Yan, J.; Lee, I.; Lund, E., Discrete material selection and structural topology optimization of composite frames for maximum fundamental frequency with manufacturing constraints, Struct. Multidiscip. Optim., 60, 5, 1741-1758, 2019
[6] Zhu, J.; Zhang, W., Maximization of structural natural frequency with optimal support layout, Struct. Multidiscip. Optim., 31, 6, 462-469, 2006
[7] Olhoff, N., Multicriterion structural optimization via bound formulation and mathematical programming, Struct. Multidiscip. Optim., 1, 1, 11-17, 1989
[8] Ma, Z. D.; Kikuchi, N.; Cheng, H. C., Topological design for vibrating structures, Comput. Methods Appl. Mech. Engrg., 121, 1-4, 259-280, 1995 · Zbl 0849.73045
[9] Min, S.; Kikuchi, N.; Park, Y. C., Optimal topology design of structures under dynamic loads, Struct. Multidiscip. Optim., 17, 2-3, 208-218, 1999
[10] Jang, H. H.; Lee, H. A.; Lee, J. Y., Dynamic response topology optimization in the time domain using equivalent static loads, AIAA J., 50, 1, 226-234, 2012
[11] Mello, L. A.M.; Salas, R. A.; Silva, E. C.N., On response time reduction of electrothermomechanical mems using topology optimization, Comput. Methods Appl. Mech. Engrg., 247, 93-102, 2012 · Zbl 1352.74191
[12] Zhao, J.; Wang, C., Dynamic response topology optimization in the time domain using model reduction method, Struct. Multidiscip. Optim., 53, 1, 101-114, 2016
[13] Kirsch, U.; Bogomolni, M.; Sheinman, I., Efficient structural optimization using reanalysis and sensitivity reanalysis, Eng. Comput., 23, 3, 229-239, 2007
[14] Amir, O.; Bendsøe, M. P.; Sigmund, O., Approximate reanalysis in topology optimization, Internat. J. Numer. Methods Engrg., 78, 12, 1474-1491, 2009 · Zbl 1183.74216
[15] Kirsch, U.; Bogomolni, M.; Sheinman, I., Nonlinear dynamic reanalysis of structures by combined approximations, Comput. Methods Appl. Mech. Engrg., 195, 33-36, 4420-4432, 2006 · Zbl 1119.74020
[16] Kirsch, U.; Bogomolni, M.; Sheinman, I., Efficient dynamic reanalysis of structures, Journal of structural engineering, 133, 3, 440-448, 2007
[17] Gao, G.; Wang, H.; Li, G., An adaptive time-based global method for dynamic reanalysis, Struct. Multidiscip. Optim., 48, 2, 355-365, 2013
[18] Wang, H.; Zeng, Y.; Li, E., “Seen is solution” a CAD/CAE integrated parallel reanalysis design system, Comput. Methods Appl. Mech. Engrg., 299, 187-214, 2016 · Zbl 1425.74495
[19] Wu, Y.; Wang, H.; Liu, J.; Zhang, S.; Huang, H., A novel dynamic isogeometric reanalysis method and its application in closed-loop optimization problems, Comput. Methods Appl. Mech. Engrg., 353, 1-23, 2019 · Zbl 1441.65025
[20] Li, Q.; Sigmund, O.; Jensen, J. S.; Aage, N., Reduced-order methods for dynamic problems in topology optimization: A comparative study, Comput. Methods Appl. Mech. Engrg., 387, Article 114149 pp., 2021 · Zbl 1507.74318
[21] Long, K.; Yang, X.; Saeed, N., Topology optimization of transient problem with maximum dynamic response constraint using soar scheme, Front. Mech. Eng., 16, 3, 593-606, 2021
[22] Xiao, M.; Lu, D.; Breitkopf, P., Multi-grid reduced-order topology optimization, Struct. Multidiscip. Optim., 61, 1-23, 2020
[23] Xiao, M.; Ma, J.; Lu, D., Stress-constrained topology optimization using approximate reanalysis with on-the-fly reduced order modeling, Adv. Model. Simul. Eng. Sci., 9, 1, 1-30, 2022
[24] Yoon, G. H., Structural topology optimization for frequency response problem using model reduction schemes, Comput. Methods Appl. Mech. Engrg., 199, 25-28, 1744-1763, 2010 · Zbl 1231.74366
[25] Kang, Z.; He, J.; Shi, L.; Miao, Z., A method using successive iteration of analysis and design for large-scale topology optimization considering eigenfrequencies, Comput. Methods Appl. Mech. Engrg., 362, Article 112847 pp., 2020 · Zbl 1439.74280
[26] Amsallem, D.; Zahr, M.; Choi, Y.; Farhat, C., Design optimization using hyper-reduced-order models, Struct. Multidiscip. Optim., 51, 4, 919-940, 2015
[27] Johnson, T.; Brown, M., Advancements in global optimization for topology optimization problems, Struct. Optim., 38, 2, 185-201, 2016
[28] Yin, J.; Wang, H., An efficient coupling reduction model-based evolutionary topology optimization method, Adv. Eng. Softw., 176, Article 103394 pp., 2023
[29] Ivarsson, N.; Wallin, M.; Tortorelli, D., Topology optimization of finite strain viscoplastic systems under transient loads, Internat. J. Numer. Methods Engrg., 114, 13, 1351-1367, 2018 · Zbl 07878367
[30] Yun, K. S.; Youn, S. K., Topology optimization of viscoelastic damping layers for attenuating transient response of shell structures, Finite Elem. Anal. Des., 141, 154-165, 2018
[31] Qian, X., On-the-fly dual reduction for time-dependent topology optimization, J. Comput. Phys., 452, Article 110917 pp., 2022 · Zbl 07517744
[32] Kristiansen, H.; Aage, N., An open-source framework for large-scale transient topology optimization using petsc, Struct. Multidiscip. Optim., 65, 10, 295, 2022
[33] Guo, X.; Cheng, G.; Liu, W. K., (Report of the Workshop Predictive Theoretical, Computational and Experimental Approaches for Additive Manufacturing. Report of the Workshop Predictive Theoretical, Computational and Experimental Approaches for Additive Manufacturing, WAM 2016, 2017, Springer)
[34] Xiao, M.; Lu, D.; Breitkopf, P., On-the-fly model reduction for large-scale structural topology optimization using principal components analysis, Struct. Multidiscip. Optim., 62, 209-230, 2020
[35] Kontoleontos, E. A.; Papoutsis-Kiachagias, E. M.; Zymaris, A. S., Adjoint-based constrained topology optimization for viscous flows, including heat transfer, Eng. Optim., 45, 8, 941-961, 2013
[36] Papoutsis-Kiachagias, E. M.; Giannakoglou, K. C., Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: industrial applications, Arch. Comput. Methods Eng., 23, 2, 255-299, 2016 · Zbl 1348.76054
[37] Phalippou, P.; Bouabdallah, S.; Breitkopf, P., ‘On-the-fly’ snapshots selection for proper orthogonal decomposition with application to nonlinear dynamics, Comput. Methods Appl. Mech. Engrg., 367, 113-120, 2020 · Zbl 1442.65058
[38] Choi, Y.; Oxberry, G.; White, D.; Kirchdoerfer, T., 2019, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)
[39] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 193-202, 1989
[40] Brüls, O.; Eberhard, P., Sensitivity analysis for dynamic mechanical systems with finite rotations, Internat. J. Numer. Methods Engrg., 74, 13, 1897-1927, 2008 · Zbl 1195.70003
[41] Alberdi, R.; Zhang, G.; Li, L.; Khandelwal, K., A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization, Internat. J. Numer. Methods Engrg., 115, 1, 1-56, 2018 · Zbl 07864826
[42] Van Loan, C. F.; Golub, G. H., Matrix Computations, 1996, The Johns Hopkins University Press · Zbl 0865.65009
[43] Zienkiewicz, O. C., A new look at the newmark, houbolt and other time stepping formulas. A weighted residual approach, Earthq. Eng. Struct. Dyn., 5, 4, 413-418, 2010
[44] Amir, O., Efficient stress-constrained topology optimization using inexact design sensitivities, Internat. J. Numer. Methods Engrg., 122, 13, 3241-3272, 2021 · Zbl 07865354
[45] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635-654, 1999 · Zbl 0957.74037
[46] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications, 2003, Springer Science and Business Media
[47] Behrou, R.; Guest, J. K., Topology optimization for transient response of structures subjected to dynamic loads, (18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2017), 3657
[48] Andreassen, E.; Clausen, A.; Schevenels, M., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1-16, 2011 · Zbl 1274.74310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.