×

SUPG reduced order models for convection-dominated convection-diffusion-reaction equations. (English) Zbl 1425.65111

Summary: This paper presents a Streamline-Upwind Petrov-Galerkin (SUPG) reduced order model (ROM) based on proper orthogonal decomposition (POD). This ROM is investigated theoretically and numerically for convection-dominated convection-diffusion-reaction problems. The SUPG finite element method was used on realistic meshes for computing the snapshots, leading to some noise in the POD data. Numerical analysis is used to propose the scaling of the stabilization parameter for the SUPG-ROM. Two approaches are used: One based on the underlying finite element discretization and the other one based on the POD truncation. The resulting SUPG-ROMs and the standard Galerkin ROM (G-ROM) are studied numerically. For many settings, the results obtained with the SUPG-ROMs are more accurate. Finally, one of the choices for the stabilization parameter is recommended.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K57 Reaction-diffusion equations

Software:

MooNMD
Full Text: DOI

References:

[1] Augustin, Matthias; Caiazzo, Alfonso; Fiebach, André; Fuhrmann, Jürgen; John, Volker; Linke, Alexander; Umla, Rudolf, An assessment of discretizations for convection-dominated convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 200, 47-48, 3395-3409 (2011) · Zbl 1230.76021
[2] John, Volker; Knobloch, Petr, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review, Comput. Methods Appl. Mech. Engrg., 196, 17-20, 2197-2215 (2007) · Zbl 1173.76342
[3] John, Volker; Schmeyer, Ellen, Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Engrg., 198, 3-4, 475-494 (2008) · Zbl 1228.76088
[4] Brooks, Alexander N.; Hughes, Thomas J. R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 1-3, 199-259 (1982), FENOMECH ’81, Part I (Stuttgart, 1981) · Zbl 0497.76041
[5] Hughes, T. J.R.; Brooks, A., A multidimensional upwind scheme with no crosswind diffusion, (Finite Element Methods For Convection Dominated Flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979). Finite Element Methods For Convection Dominated Flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), AMD, vol. 34 (1979), Amer. Soc. Mech. Engrs. (ASME): Amer. Soc. Mech. Engrs. (ASME) New York), 19-35 · Zbl 0423.76067
[6] Roos, H. G.; Stynes, M.; Tobiska, L., (Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, Springer Series in Computational Mathematics, vol. 24 (2008), Springer) · Zbl 1155.65087
[7] John, V.; Novo, J., Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations, SIAM J. Numer. Anal., 49, 3, 1149-1176 (2011) · Zbl 1233.65065
[8] P. Holmes, J.L. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge, 1996.; P. Holmes, J.L. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge, 1996. · Zbl 0890.76001
[9] Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G., Model order reduction in fluid dynamics: challenges and perspectives, (Quarteroni, A.; Rozza, G., Reduced Order Methods For Modeling And Computational Reduction. Reduced Order Methods For Modeling And Computational Reduction, Modeling, Simulation and Applications, vol. 9 (2014), Springer), 235-274 · Zbl 1395.76058
[10] Noack, B. R.; Morzynski, M.; Tadmor, G., Reduced-Order Modelling for Flow Control, Vol. 528 (2011), Springer-Verlag
[11] Aubry, N.; Lian, W. Y.; Titi, E. S., Preserving symmetries in the proper orthogonal decomposition, SIAM J. Sci. Comput., 14, 483-505 (1993) · Zbl 0774.65084
[12] Amsallem, D.; Farhat, C., Stabilization of projection-based reduced-order models, Internat. J. Numer. Methods Engrg., 91, 4, 358-377 (2012) · Zbl 1253.90184
[13] Kalashnikova, I.; Bloemen Waanders, S.van; Arunajatesan, B.; Barone, M., Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment, Comput. Methods Appl. Mech. Engrg., 272, 15, 251-270 (2014) · Zbl 1296.93165
[14] Barone, M. F.; Kalashnikova, I.; Segalman, D. J.; Thornquist, H. K., Stable Galerkin reduced order models for linearized compressible flow, J. Comput. Phys., 228, 6, 1932-1946 (2009) · Zbl 1162.76025
[15] Balajewicz, Maciej; Dowell, Earl H., Stabilization of projection-based reduced order models of the Navier-Stokes, Nonlinear Dynam., 70, 2, 1619-1632 (2012)
[16] Sirisup, S.; Karniadakis, G. E., A spectral viscosity method for correcting the long-term behavior of POD models, J. Comput. Phys., 194, 1, 92-116 (2004) · Zbl 1136.76412
[17] Aubry, N.; Holmes, P.; Lumley, J. L.; Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech., 192, 115-173 (1988) · Zbl 0643.76066
[18] Baiges, Joan; Codina, Ramon; Idelsohn, Sergio, Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 72, 12, 1219-1243 (2013) · Zbl 1286.76028
[19] Bergmann, M.; Bruneau, C. H.; Iollo, A., Enablers for robust POD models, J. Comput. Phys., 228, 2, 516-538 (2009) · Zbl 1409.76099
[20] Iollo, A.; Dervieux, A.; Désidéri, J. A.; Lanteri, S., Two stable POD-based approximations to the Navier-Stokes equations, Comput. Vis. Sci., 3, 1, 61-66 (2000) · Zbl 1008.76076
[21] Kragel, B., Streamline diffusion POD models in optimization (2005), University of Trier, (Ph.D. thesis)
[22] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison, Comput. Methods Appl. Mech. Engrg., 237-240, 10-26 (2012) · Zbl 1253.76050
[23] Dahmen, W.; Plesken, C.; Welper, G., Double greedy algorithms: reduced basis methods for transport dominated problems, ESAIM: Math. Model. Numer. Anal., 48, 3, 623-663 (2014) · Zbl 1291.65339
[24] Dede, Luca, Reduced basis method for parametrized advection-reaction problems, J. Comput. Math, 28, 1, 122-148 (2010) · Zbl 1224.65262
[25] Pacciarini, P.; Rozza, G., Stabilized reduced basis method for parametrized advection-diffusion PDEs, Comput. Methods Appl. Mech. Engrg., 274, 1-18 (2014) · Zbl 1296.65165
[26] Aquino, W.; Brigham, J. C.; Earls, C. J.; Sukumar, N., Generalized finite element method using proper orthogonal decomposition, Internat. J. Numer. Methods Engrg., 79, 7, 887-906 (2009) · Zbl 1171.76416
[27] Caiazzo, Alfonso; Iliescu, Traian; John, Volker; Schyschlowa, Swetlana, A numerical investigation of velocity-pressure reduced order models for incompressible flows, J. Comput. Phys., 259, 598-616 (2014) · Zbl 1349.76050
[28] Kunisch, K.; Volkwein, S., Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102, 2, 345-371 (1999) · Zbl 0949.93039
[29] Sirovich, L., Turbulence and the dynamics of coherent structures. Parts I-III, Quart. Appl. Math., 45, 3, 561-590 (1987) · Zbl 0676.76047
[30] Volkwein, S., Model reduction using proper orthogonal decomposition, (Lecture Notes, Faculty of Mathematics and Statistics (2011), University of Konstanz)
[31] Volkwein, S., Proper orthogonal decomposition: Theory and reduced-order modelling, (Lecture Notes (2013), Department of Mathematics and Statistics, University of Konstanz)
[32] Ciarlet, Philippe G., The finite element method for elliptic problems, (Studies in Mathematics and its Applications, vol. 4 (1978), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam-New York-Oxford) · Zbl 0383.65058
[33] Harari, Isaac; Hughes, Thomas J. R., What are \(C\) and \(h\)?: inequalities for the analysis and design of finite element methods, Comput. Methods Appl. Mech. Engrg., 97, 2, 157-192 (1992) · Zbl 0764.73083
[34] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 1, 117-148 (2001) · Zbl 1005.65112
[35] Iliescu, T.; Wang, Z., Are the snapshot difference quotients needed in the proper orthogonal decomposition?, SIAM J. Sci. Comput., 36, 3, A1221-A1250 (2014) · Zbl 1297.65092
[36] Conway, J. B., A Course in Functional Analysis (1990), Springer-Verlag: Springer-Verlag New York · Zbl 0706.46003
[37] Iliescu, T.; Wang, Z., Variational multiscale proper orthogonal decomposition: Navier-Stokes equations, Num. Meth. P.D.E.s, 30, 2, 641-663 (2014) · Zbl 1452.76048
[38] Singler, J. R., New POD error expressions, error bounds, and asymptotic results for reduced order models of parabolic PDEs, SIAM J. Numer. Anal., 52, 2, 852-876 (2014) · Zbl 1298.65140
[39] Linß, Torsten; Stynes, Martin, Numerical methods on Shishkin meshes for linear convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 190, 28, 3527-3542 (2001) · Zbl 0988.76062
[40] Shih, Yintzer; Cheng, Jun-Yong; Chen, Kuen-Tsann, An exponential-fitting finite element method for convection-diffusion problems, Appl. Math. Comput., 217, 12, 5798-5809 (2011) · Zbl 1211.65157
[41] John, Volker; Matthies, Gunar, MooNMD—a program package based on mapped finite element methods, Comput. Vis. Sci., 6, 2-3, 163-169 (2004) · Zbl 1061.65124
[42] Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal., 33, 6, 1293-1316 (1999) · Zbl 0946.65112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.