×

Reduced-order based distributed feedback control of the Benjamin-Bona-Mahony-Burgers equation. (English) Zbl 07121111

Summary: In this paper, we discuss a reduced-order modeling for the Benjamin-Bona-Mahony-Burgers (BBMB) equation and its application to a distributed feedback control problem through the centroidal Voronoi tessellation (CVT). Spatial distcritization to the BBMB equation is based on the finite element method (FEM) using B-spline functions. To determine the basis elements for the approximating subspaces, we elucidate the CVT approaches to reduced-order bases with snapshots. For the purpose of comparison, a brief review of the proper orthogonal decomposition (POD) is provided and some numerical experiments implemented including full-order approximation, CVT based model, and POD based model. In the end, we apply CVT reduced-order modeling technique to a feedback control problem for the BBMB equation.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics
Full Text: DOI

References:

[1] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London 272 (1972), no. 1220, 47-78. · Zbl 0229.35013 · doi:10.1098/rsta.1972.0032
[2] D. J. Korteweg, and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag. 39 (1895), 422-443. · JFM 26.0881.02 · doi:10.1080/14786449508620739
[3] A. Hasan, B. Foss, and O. M. Aamo, Boundary control of long waves in nonlinear dispersive systems, in: proc. of 1st Australian Control Conference, Melbourne, 2011.
[4] A. Balogh, M, Krstic, Boundary control of the Korteweg-de Vries-Burgers equation: further results on stabilization and well-posedness with numerical demonstration, IEEE Transactions on Automatic Control 455 (2000), 1739-1745. · Zbl 0990.93049
[5] A. Balogh, M, Krstic, Burgers equation with nonlinear boundary feedback: \(H^1\) stability, well-posedness and simulation, Math. Probl. Eng. 6 (2000), 189-200. · Zbl 1058.93050 · doi:10.1155/S1024123X00001320
[6] M. Krstic, On global stabilization of Burgers equation by boundary control, Systems Control Lett. 37 (1999), 123-141. · Zbl 1074.93552 · doi:10.1016/S0167-6911(99)00013-4
[7] D. L. Russell, and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc. 348 (1996), 3643-3672. · Zbl 0862.93035 · doi:10.1090/S0002-9947-96-01672-8
[8] C. Laurent, L. Rosier, and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential Equations 35 (2010), 707-744. · Zbl 1213.93015 · doi:10.1080/03605300903585336
[9] J. L. Bona, and L. H. Luo, Asymptotic decomposition of nonlinear, dispersive wave equation with dissipation, Physica D 152-153 (2001), 363-383. · Zbl 0982.35018 · doi:10.1016/S0167-2789(01)00180-4
[10] N. Aubry, W. Lian, and E. Titi, Preserving symmetries in the proper orthgonal decomposition, SIAM J. Sci. Comput. 14 (1993), 483-505. · Zbl 0774.65084 · doi:10.1137/0914030
[11] G. Berkooz, P. Holmes, and J. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech. 25 (1993), 539-575. · doi:10.1146/annurev.fl.25.010193.002543
[12] G. Berkooz, and E. Titi, Galerkin projections and the proper orthognal decomposition for equivariant equations, Phys. Lett. A 174 (1993), 94-102. · doi:10.1016/0375-9601(93)90549-F
[13] E. Christensen, M. Brons, and J. Sorensen, Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows, SIAM J. Sci. Comput. 21 (2000), 1419-1434. · Zbl 0959.35018
[14] A. Deane, I. Kevrekidis, G. Karniadakis, and S. Orszag, Low-dimensional models for compex geometry flows: application to grooved channels and circular cylinders, Phys. Fluids A 3 (1991), 2337-2354. · Zbl 0746.76021
[15] M. Graham, and I. Kevrekidis, Pattern analysis and model reduciton: some alternative approaches to the Karhunen-Loeve decomposition, Comput. Chem. Engrg. 20 (1996), 495-506. · doi:10.1016/0098-1354(95)00040-2
[16] M. Krstic, On global stabilization of Burgers equaiton by boundary control, Systems Control Lett. 37 (1999), 123-141. · Zbl 1074.93552 · doi:10.1016/S0167-6911(99)00013-4
[17] K. Kunisch, and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl. 102 (1999), 345-371. · Zbl 0949.93039 · doi:10.1023/A:1021732508059
[18] H.V. Ly, and H.T. Tran, Modeling and control of physical processes using proper orthogonal decomposition, Comput. Math. Appl. 33 (2001), 223-236. · Zbl 0966.93018
[19] J. Lumley, Stochastic Tools in Turbulence, Academic, New York, (1971) · Zbl 1230.76004
[20] S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation, SIAM J. Control. Optim. 39 (2000), 1677-1696. · Zbl 1007.93035
[21] H. Park, and Y. Jang, Control of Burgers equation by means of mode reduction, Int. J. Engrg. Sci. 38 (2000), 785-805. · Zbl 1210.49032 · doi:10.1016/S0020-7225(99)00044-0
[22] H. Park, and J. Lee, Solution of an inverse heat transfer problem by means of empirical reduction of modes, Z. Angew. Math. Phys. 51 (2000), 17-38. · Zbl 0963.65101 · doi:10.1007/PL00001505
[23] H. Park, and W. Lee, An efficient method of solving the Navier-Stokes equations for flow control, Int. J. Numer. Mech. Engrg. 41 (1998), 1133-1151. · Zbl 0912.76061 · doi:10.1002/(SICI)1097-0207(19980330)41:6<1133::AID-NME329>3.0.CO;2-Y
[24] S. Ravindran, Proper orthogonal decomposition in optimal control of fluids, Int. J. Numer. Meth. Fluids 34 (2000), 425-448. · Zbl 1005.76020 · doi:10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W
[25] S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD, SIAM J. Sci. Comput. 15 (2000), 457-478. · Zbl 1048.76016 · doi:10.1023/A:1011184714898
[26] S. Volkwein, Optimal control of a phase field model using the proper orthogonal decomposition, ZAMM 81 (2001), 83-97. · Zbl 1007.49019 · doi:10.1002/1521-4001(200102)81:2<83::AID-ZAMM83>3.0.CO;2-R
[27] S. Volkwein, Proper orthogonal decomposition and singular value decomposition, Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich Kontinuierliche Optimierung und Kontrolle, Bericht Nr. 153, Graz, (1999)
[28] G.-R. Piao, and H.-C. Lee, Internal feedback control of the Benjamin-Bona-Mahony-Burgers equation. J. Korean Soc. Ind. Appl. Math. 18 (2014), 269-277. · Zbl 1331.93063
[29] G.-R. Piao, and H.-C. Lee, Distributed Feedback Control of the Benjamin-Bona-Mahony-Burgers Equation by a Reduced-Order Model, East Asian Journal on Applied Mathematics 5 (2015), 61-74. · Zbl 1320.93045 · doi:10.4208/eajam.210214.061214a
[30] J. Burkardt, M. Gunzburger, and H.-C. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Methods Appl. Mech. Engrg. 196 (2006), 337-355. · Zbl 1120.76323 · doi:10.1016/j.cma.2006.04.004
[31] J. Burkardt, M. Gunzburger, and H.-C. Lee, Centroidal Voronoi tessellation-based reduced-order modeling of complex systems, SIAM J. Sci. Comput. 28 (2006), 459-484. · Zbl 1111.65084
[32] H.-C. Lee, S.-W. Lee, and G.-R. Piao, Reduced-order modeling of Burgers equations based on centroidal Voronoi tessellation. Int. J. Numer. Anal. Model. 4 (2007), 559-583. · Zbl 1154.35303
[33] H.-C. Lee, and G.-R. Piao, Boundary feedback control of the Burgers equations by a reduced-order approach using centroidal Voronoi tessellations. J. Sci. Comput. 43 (2010), 369-387. · Zbl 1203.93088 · doi:10.1007/s10915-009-9310-4
[34] P.M. Prenter, Splines and variational methods, John Wiley and Sons, New York, (1975) · Zbl 0344.65044
[35] Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations : applications and algorithms, SIAM Review 41 (1999), 637-676. · Zbl 0983.65021 · doi:10.1137/S0036144599352836
[36] L. Ju, Q. Du, and M. Gunzburger, Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations, J. Parallel Comput. 28 (2002), 1477-1500. · Zbl 1014.68202 · doi:10.1016/S0167-8191(02)00151-5
[37] S. Lloyd, Least squares quantization in PCM, IEEE Trans. Infor. Theory, 28 (1982), 129-137. · Zbl 0504.94015 · doi:10.1109/TIT.1982.1056489
[38] J. MacQueen, Some methods for classification and analysis of multivariate observations, Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, University of California, pp. 281-297, (1967) · Zbl 0214.46201
[39] G. Golub, and C. van Loan, Matrix computations, Johns Hopkins University, Baltimore, (1996) · Zbl 0865.65009
[40] C. T. Chen, Linear System Theory and Design, Holt, Rinehart and Winston, New York, NY, (1984)
[41] G.-R. Piao, H.-C. Lee, and J.-Y. Lee, Distributed feedback control of the Burgers equation by a reduced-order approach using weighted centroidal Voronoi tessellation, J. KSIAM 13 (2009), 293-305.
[42] H.-C. Lee, and G.-R. Piao, Boundary feedback control of the Burgers equations by a reduced-order approach using centroidal Voronoi tessellations. J. Sci. Comput. 43 (2010), 369-387. · Zbl 1203.93088 · doi:10.1007/s10915-009-9310-4
[43] J. A. Burns, and S. Kang, A control problem for Burgers’ equation with bounded input/oqtput, ICASE Report 90-45, 1990, NASA Langley research Center, Hampton, VA
[44] K. Kunisch, and S. Volkwein, Control of burger’s equation by a reduced order approach using proper orthogonal decomposition, J. Optim. Theory Appl. 102 no. 2, (1999), 345-371. · Zbl 0949.93039 · doi:10.1023/A:1021732508059
[45] J. L. Bona, W. G. Pritchard, and L. R. Scott, An evaluation of a model equation for water waves, Phil.Trans. R.Soc.London A 302 (1981), 457-510. · Zbl 0497.76023 · doi:10.1098/rsta.1981.0178
[46] H. Grad, and P. N. Hu, Unified shock profile in a plasma, Phys, Fluids 10 (1967), 2596-2602. · doi:10.1063/1.1762081
[47] R. S. Johnson, A nonlinear equation incorporating damping and dispersion, J.Fluid Mech. 42 (1970), 49-60. · Zbl 0213.54904 · doi:10.1017/S0022112070001064
[48] J. A. Burns, and S. Kang, A control problem for Burgers’ equation with bounded input/oqtput, Nonlinear Dynamics, 2 (1991), 235-262. · doi:10.1007/BF00045296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.