×

POD and CVT-based reduced-order modeling of Navier-Stokes flows. (English) Zbl 1120.76323

Summary: A discussion of reduced-order modeling for complex systems such as fluid flows is given to provide a context for the construction and application of reduced-order bases. Reviews of the POD (proper orthogonal decomposition) and CVT (centroidal Voronoi tessellation) approaches to reduced-order modeling are provided, including descriptions of POD and CVT reduced-order bases, their construction from snapshot sets, and their application to the low-cost simulation of the Navier-Stokes system. Some concrete incompressible flow examples are used to illustrate the construction and use of POD and CVT reduced-order bases and to compare and contrast the two approaches to reduced-order modeling.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

AS 58; AS 136
Full Text: DOI

References:

[1] Aubry, N.; Lian, W.; Titi, E., Preserving symmetries in the proper orthogonal decomposition, SIAM J. Sci. Comput., 14, 483-505 (1993) · Zbl 0774.65084
[2] Berkooz, G.; Holmes, P.; Lumley, J., The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech., 25, 539-575 (1993)
[3] Berkooz, G.; Titi, E., Galerkin projections and the proper orthogonal decomposition for equivariant equations, Phys. Lett. A, 174, 94-102 (1993)
[4] Christensen, E.; Brons, M.; Sorensen, J., Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows, SIAM J. Sci. Comput., 21, 1419-1434 (2000) · Zbl 0959.35018
[5] Deane, A.; Kevrekidis, I.; Karniadakis, G.; Orszag, S., Low-dimensional models for complex geometry flows: applications to grooved channels and circular cylinders, Phys. Fluids A, 3, 2337-2354 (1991) · Zbl 0746.76021
[6] Du, Q.; Faber, V.; Gunzburger, M., Centroidal Voronoi tessellations: applications and algorithms, SIAM Rev., 41, 637-676 (1999) · Zbl 0983.65021
[7] Q. Du, M. Gunzburger, Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation, in: Proc. Fluids Engineering Division Summer Meeting, FEDSM2002-31051, ASME, 2002.; Q. Du, M. Gunzburger, Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation, in: Proc. Fluids Engineering Division Summer Meeting, FEDSM2002-31051, ASME, 2002.
[8] Du, Q.; Gunzburger, M., Grid generation and optimization based on centroidal Voronoi tessellations, Appl. Math. Comput., 133, 591-607 (2002) · Zbl 1024.65118
[9] Du, Q.; Gunzburger, M., Centroidal Voronoi tessellation based proper orthogonal decomposition analysis, (Proc. 8th Conference on Control of Distributed Parameter Systems (2002), Birkhauser: Birkhauser Basel), 137-150 · Zbl 1087.93021
[10] Du, Q.; Gunzburger, M.; Ju, L., Meshfree, probabilistic determination of points sets and support regions for meshless computing, Comput. Methods Appl. Mech. Engrg., 191, 1349-1366 (2002) · Zbl 0993.65009
[11] Du, Q.; Gunzburger, M.; Ju, L., Constrained CVTs on general surfaces, SIAM J. Sci. Comput., 24, 1488-1506 (2003) · Zbl 1036.65101
[12] Du, Q.; Gunzburger, M.; Ju, L., Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere, Comput. Methods Appl. Mech. Engrg., 192, 3933-3957 (2003) · Zbl 1046.65094
[13] A. Faulds, Centroidal Voronoi Decompositions, Algorithms and Applications, M.S. Thesis, Department of Mathematics, Penn State University, 2002.; A. Faulds, Centroidal Voronoi Decompositions, Algorithms and Applications, M.S. Thesis, Department of Mathematics, Penn State University, 2002.
[14] Faulds, A.; King, B., Sensor location in feedback control of partial differential equation systems, (Proc. 2000 IEEE CCA/CACSD (2000), IEEE: IEEE Washington), 536-541
[15] Raviart, P.-A.; Girault, V., Finite Element Methods for Navier-Stokes Equations (1986), Springer: Springer Berlin · Zbl 0413.65081
[16] Graham, M.; Kevrekidis, I., Pattern analysis and model reduction: some alternative approaches to the Karhunen-Lóeve decomposition, Comput. Chem. Engrg., 20, 495-506 (1996)
[17] Golub, G.; van Loan, C., Matrix Computations (1996), Johns Hopkins University: Johns Hopkins University Baltimore · Zbl 0865.65009
[18] Gunzburger, M., Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice and Algorithms (1989), Academic: Academic Boston · Zbl 0697.76031
[19] Hartigan, J., Clustering Algorithms (1975), Wiley · Zbl 0372.62040
[20] Hartigan, J.; Wong, M., Algorithm AS 136: A \(K\)-Means Clustering Algorithm, Appl. Stat., 28, 100-108 (1979) · Zbl 0447.62062
[21] Holmes, P.; Lumley, J.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996), Cambridge University: Cambridge University Cambridge · Zbl 0890.76001
[22] Holmes, P.; Lumley, J.; Berkooz, G.; Mattingly, J.; Wittenberg, R., Low-dimensional models of coherent structures in turbulence, Phys. Rep., 287, 337-384 (1997)
[23] Ju, L.; Du, Q.; Gunzburger, M., Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations, J. Parallel Comput., 28, 1477-1500 (2002) · Zbl 1014.68202
[24] Kunisch, K.; Volkwein, S., Control of Burger’s equation by a reduced order approach using proper orthogonal decomposition, JOTA, 102, 345-371 (1999) · Zbl 0949.93039
[25] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich Kontinuierliche Optimierung und Kontrolle, Bericht Nr. 153, Graz, 1999.; K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich Kontinuierliche Optimierung und Kontrolle, Bericht Nr. 153, Graz, 1999. · Zbl 1005.65112
[26] Lumley, J., Stochastic Tools in Turbulence (1971), Academic: Academic New York
[27] Martinez, W.; Martinez, A., Computational Statistics Handbook with MATLAB (2002), Chapman and Hall/CRC
[28] Nagy, D., Modal representation of geometrically nonlinear behavior by the finite element method, Comput. Struct., 10, 693 (1979) · Zbl 0406.73071
[29] Noor, A., Recent advances in reduction methods for nonlinear problems, Comput. Struct., 13, 31-44 (1981) · Zbl 0455.73080
[30] Noor, A.; Anderson, C.; Peters, J., Reduced basis technique for collapse analysis of shells, AAIA J., 19, 393 (1981)
[31] Noor, A.; Peters, J., Tracking post-linit-paths with reduced basis technique, Comput. Methods Appl. Mech. Engrg., 28, 217 (1981) · Zbl 0466.73090
[32] Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S., Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (2000), Wiley: Wiley Chichester · Zbl 0946.68144
[33] Park, H.; Cho, D., Low dimensional modeling of flow reactors, Int. J. Heat Mass Transfer, 39, 3311-3323 (1996)
[34] Park, H.; Chung, J., A sequential method of solving inverse natural convection problems, Inverse Prob., 18, 529-546 (2002) · Zbl 1027.65130
[35] Park, H.; Jang, Y., Control of Burgers equation by means of mode reduction, Int. J. Engrg. Sci., 38, 785-805 (2000) · Zbl 1210.49032
[36] Park, H.; Lee, J., Solution of an inverse heat transfer problem by means of empirical reduction of modes, Z. Angew. Math. Phys., 51, 17-38 (2000) · Zbl 0963.65101
[37] Park, H.; Lee, W., An efficient method of solving the Navier-Stokes equations for flow control, Int. J. Numer. Meth. Engrg., 41, 1133-1151 (1998) · Zbl 0912.76061
[38] Park, H.; Lee, W., A new numerical method for the boundary optimal control problems of the heat conduction equation, Int. J. Numer. Meth. Engrg., 53, 1593-1613 (2002) · Zbl 0994.80010
[39] Peterson, J., The reduced basis method for incompressible viscous flow calculations, SIAM J. Sci. Stat. Comput., 10, 777 (1989) · Zbl 0672.76034
[40] M. Rathinam, L. Petzold, A new look at proper orthogonal decomposition, in press.; M. Rathinam, L. Petzold, A new look at proper orthogonal decomposition, in press. · Zbl 1053.65106
[41] M. Rathinam, L. Petzold, Dynamic iteration using reduced order models: a method for simulation of large scale modular systems, in press.; M. Rathinam, L. Petzold, Dynamic iteration using reduced order models: a method for simulation of large scale modular systems, in press. · Zbl 1033.65056
[42] Ravindran, S., Proper orthogonal decomposition in optimal control of fluids, Int. J. Numer. Meth. Fluids, 34, 425-448 (2000) · Zbl 1005.76020
[43] Ravindran, S., Reduced-order adaptive controllers for fluid flows using POD, SIAM J. Sci. Comput., 15, 457-478 (2000) · Zbl 1048.76016
[44] Rodríguez, J.; Sirovich, L., Low-dimensional dynamics for the complex Ginzburg-Landau equations, Physica D, 43, 77-86 (1990) · Zbl 0723.76042
[45] Sirovich, L., Turbulence and the dynamics of coherent structures, I-III, Quart. J. Appl. Math., 45, 561-590 (1987) · Zbl 0676.76047
[46] Smaoui, N.; Armbruster, D., Symmetry and the Karhunen-Loève analysis, SIAM J. Sci. Comput., 18, 1526-1532 (1997) · Zbl 0888.35008
[47] Späth, H., Cluster Analysis Algorithms for Data Reduction and Classification of Objects (1980), Ellis Horwood · Zbl 0435.62059
[48] Späth, H., Cluster Dissection and Analysis, Theory, FORTRAN Programs, Examples (1985), Ellis Horwood · Zbl 0584.62094
[49] Sparks, D., Algorithm AS 58: Euclidean cluster analysis, Appl. Stat., 22, 126-130 (1973)
[50] Volkwein, S., Optimal control of a phase field model using the proper orthogonal decomposition, ZAMM, 81, 83-97 (2001) · Zbl 1007.49019
[51] S. Volkwein, Proper orthogonal decomposition and singular value decomposition, Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich Kontinuierliche Optimierung und Kontrolle, Bericht Nr. 153, Graz, 1999.; S. Volkwein, Proper orthogonal decomposition and singular value decomposition, Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich Kontinuierliche Optimierung und Kontrolle, Bericht Nr. 153, Graz, 1999.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.