×

Elastic fields generated by multiple small inclusions with high mass density at nearly resonant frequencies. (English) Zbl 1542.35269

Summary: We derive the elastic field generated by multiple small-scaled inclusions distributed in a bounded set of \(\mathbb{R}^3\). These inclusions are modelled with moderate values of the Lamé coefficients while they have a large relative mass density. These properties allow them to enjoy sequences of resonant frequencies that can be computed via the eigenvalues of the volume integral operator having the Navier fundamental matrix as a kernel, i.e., the Navier volume operator. The dominant field, i.e., the Foldy-Lax field, models the multiple interactions between the inclusions with scattering coefficients that are inversely proportional to the difference between the used incident frequency and the already mentioned resonances. We show, in particular, that to reconstruct remotely the scattered field generated after \(N\) interactions between the inclusions, one needs to use an incident frequency appropriately close to the proper resonance of the inclusions. We provide an explicit link between the order \(N\) of interactions and the distance from the incident frequency to the resonance. Finally, if the cluster of the inclusions is densely distributed in a given bounded domain, then the expression of the induced dominant field suggests that the equivalent homogenized mass density can change sign depending if the used incident frequencies is smaller or larger than a certain threshold (which is explicitly given in terms of the resonant frequencies of the inclusions).

MSC:

35P25 Scattering theory for PDEs
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
74B05 Classical linear elasticity

References:

[1] Alsaedi, A.; Alzahrani, F.; Challa, D. P.; Kirane, M.; Sini, M., Extraction of the index of refraction by embedding multiple small inclusions, Inverse Probl., 32, 4, Article 045004 pp., 2016 · Zbl 1398.76206
[2] Alves, C. J.S.; Kress, R., On the operator in elastic obstacle scattering, IMA J. Appl. Math., 67, 1, 1-21, 2002 · Zbl 1141.35429
[3] Ammari, H., An Introduction to Mathematics of Emerging Biomedical Imaging, Mathématiques & Applications (Berlin), vol. 62, 2008, Springer: Springer Berlin · Zbl 1181.92052
[4] Ammari, H.; Bretin, E.; Garnier, J.; Kang, H.; Lee, H.; Wahab, A., Mathematical Methods in Elasticity Imaging, Princeton Series in Applied Mathematics, 2015, Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1332.35002
[5] Ammari, H.; Calmon, P.; Iakovleva, E., Direct elastic imaging of a small inclusion, SIAM J. Imaging Sci., 1, 2, 169-187, 2008 · Zbl 1179.35341
[6] Ammari, H.; Challa, D. P.; Choudhury, A. P.; Sini, M., The point-interaction approximation for the fields generated by contrasted bubbles at arbitrary fixed frequencies, J. Differ. Equ., 267, 4, 2104-2191, 2019 · Zbl 1447.35371
[7] Ammari, H.; Challa, D. P.; Choudhury, A. P.; Sini, M., The equivalent media generated by bubbles of high contrasts: volumetric metamaterials and metasurfaces, Multiscale Model. Simul., 18, 1, 240-293, 2020 · Zbl 1439.35555
[8] Ammari, H.; Fitzpatrick, B.; Gontier, D.; Lee, H.; Zhang, H., Minnaert resonances for acoustic waves in bubbly media, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 35, 7, 1975-1998, 2018 · Zbl 1400.35230
[9] Ammari, H.; Kang, H.; Lee, H., Layer Potential Techniques in Spectral Analysis, Mathematical Surveys and Monographs, vol. 153, 2009, American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1167.47001
[10] Ammari, H.; Li, B.; Zou, J., Mathematical analysis of electromagnetic scattering by dielectric nanoparticles with high refractive indices, Trans. Am. Math. Soc., 376, 1, 39-90, 2023 · Zbl 1501.35272
[11] Bouzekri, A.; Sini, M., Mesoscale approximation of the electromagnetic fields, Ann. Henri Poincaré, 22, 6, 1979-2028, 2021 · Zbl 1467.35142
[12] Caloz, C.; Deck-Léger, Z.-L., Spacetime metamaterials - Part I: general concepts, IEEE Trans. Antennas Propag., 68, 3, 1569-1582, 2019
[13] Cao, X.; Ghandriche, A.; Sini, M., The electromagnetic waves generated by a cluster of nanoparticles with high refractive indices, J. Lond. Math. Soc. (2), 108, 4, 1531-1616, 2023 · Zbl 1528.35176
[14] Challa, D. P.; Choudhury, A. P.; Sini, M., Mathematical imaging using electric or magnetic nanoparticles as contrast agents, Inverse Probl. Imaging, 12, 3, 573-605, 2018 · Zbl 1395.35210
[15] Challa, D. P.; Gangadaraiah, D.; Sini, M., Extraction of the mass density using elastic fields generated by injected highly dense small scaled inclusions, 2023
[16] Challa, D. P.; Sini, M., On the justification of the Foldy-Lax approximation for the acoustic scattering by small rigid bodies of arbitrary shapes, Multiscale Model. Simul., 12, 1, 55-108, 2014 · Zbl 1311.35070
[17] Challa, D. P.; Sini, M., Multiscale analysis of the acoustic scattering by many scatterers of impedance type, Z. Angew. Math. Phys., 67, 3, Article 58 pp., 2016 · Zbl 1352.35082
[18] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory, Classics in Applied Mathematics, vol. 72, 2013, Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1291.35003
[19] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, vol. 93, 2013, Springer: Springer New York · Zbl 1266.35121
[20] Dabrowski, A.; Ghandriche, A.; Sini, M., Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies, Inverse Probl. Imaging, 15, 3, 555-597, 2021 · Zbl 1467.35345
[21] Dassios, G.; Kleinman, R., Low Frequency Scattering, Oxford Mathematical Monographs, 2000, The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York · Zbl 0982.76002
[22] Deng, Y.; Li, H.; Liu, H., On spectral properties of Neuman-Poincaré operator and plasmonic resonances in 3D elastostatics, J. Spectr. Theory, 9, 3, 767-789, 2019 · Zbl 1435.35372
[23] Deng, Y.; Li, H.; Liu, H., Analysis of surface polariton resonance for nanoparticles in elastic system, SIAM J. Math. Anal., 52, 2, 1786-1805, 2020 · Zbl 1436.35034
[24] Deng, Y.; Li, H.; Liu, H., Spectral properties of Neumann-Poincaré operator and anomalous localized resonance in elasticity beyond quasi-static limit, J. Elast., 140, 2, 213-242, 2020 · Zbl 1440.35347
[25] Ghandriche, A.; Sini, M., An introduction to the mathematics of the imaging modalities using small scaled contrast agents, ICCM Not., 10, 1, 28-43, 2022 · Zbl 1510.35397
[26] Ghandriche, A.; Sini, M., Photo-acoustic inversion using plasmonic contrast agents: the full Maxwell model, J. Differ. Equ., 341, 1-78, 2022 · Zbl 1504.35524
[27] Ghandriche, A.; Sini, M., The Calderon problem revisited: reconstruction with resonant perturbations, 2023
[28] Ghandriche, A.; Sini, M., Simultaneous reconstruction of optical and acoustical properties in photoacoustic imaging using plasmonics, SIAM J. Appl. Math., 83, 4, 1738-1765, 2023 · Zbl 1522.35581
[29] Jikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals, 2012, Springer Science & Business Media
[30] Kesavan, S., Topics in Functional Analysis and Applications, 1989, John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0666.46001
[31] Kinsler, L. E.; Frey, A. R.; Coppens, A. B.; Sanders, J. V., Fundamentals of Acoustics, 2000, John Wiley & Sons
[32] Kupradze, V. D., Potential methods in the theory of elasticity, 1965, Technical report · Zbl 0188.56901
[33] Kupradze, V. D.; Gegelia, T. G.; Basheleĭshvili, M. O.; Burchuladze, T. V., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Series in Applied Mathematics and Mechanics, vol. 25, 1979, North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam-New York · Zbl 0406.73001
[34] Li, H.; Liu, H.; Zou, J., Minnaert resonances for bubbles in soft elastic materials, SIAM J. Appl. Math., 82, 1, 119-141, 2022 · Zbl 1483.35254
[35] Li, H.; Liu, H.; Zou, J., Elastodynamical resonances and cloaking of negative material structures beyond quasistatic approximation, Stud. Appl. Math., 150, 3, 716-754, 2023 · Zbl 1539.74152
[36] Maugin, G. A., Material Inhomogeneities in Elasticity, 1993, Chapman and Hall · Zbl 0797.73001
[37] Maz’ya, V.; Movchan, A.; Nieves, M., Green’s Kernels and Meso-Scale Approximations in Perforated Domains, Lecture Notes in Mathematics, vol. 2077, 2013, Springer: Springer Heidelberg · Zbl 1273.35007
[38] Ntziachristos, V., Going deeper than microscopy: the optical imaging frontier in biology, Nat. Methods, 7, 8, 603-614, 2010
[39] Osipov, A. V.; Tretyakov, S. A., Modern Electromagnetic Scattering Theory with Applications, 2017, John Wiley and Sons: John Wiley and Sons Chichester, UK
[40] Pearce, J.; Giustini, A.; Stigliano, R.; Jack Hoopes, P., Magnetic heating of nanoparticles: the importance of particle clustering to achieve therapeutic temperatures, J. Nanotechnol. Eng. Med., 4, 1, Article 011005 pp., 2013
[41] Ramm, A. G., Wave Scattering by Small Bodies of Arbitrary Shapes, 2005, World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ · Zbl 1081.78001
[42] Serdyukov, A.; Semchenko, I.; Tretyakov, S.; Sihvola, A., Electromagnetics of Bi-Anisotropic Materials: Theory and Applications, 2001, Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Amsterdam
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.