×

The point-interaction approximation for the fields generated by contrasted bubbles at arbitrary fixed frequencies. (English) Zbl 1447.35371

The paper deals with a linearized model of the acoustic wave propagation generated by small bubbles in the harmonic regime. The waves with relative densities having contrasts of the order \(a^{\beta}\), \(\beta > 0\) which generated by a cluster of \(M\) small bubbles and distributed in a bounded domain \(\Omega\), are investigated. Here \(a\) models their maximum diameter, \(a<1\), \(d\) is the minimum distance and \(\beta\) is the contrasts parameter of the small bubbles. Natural conditions on \(M\), \(d\) and \(\beta\) are found under which the point interaction approximation (the Foldy-Lax approximation) is valid. With the regimes allowed by our conditions, one can deal with a general class of such materials. Applications of these expansions in material sciences and imaging are immediate. For instance, they are enough to derive and justify the effective media of the cluster of the bubbles for a class of gases with densities having contrasts of the order \(a^{\beta}\), \(\beta \in (\frac{3}{2}, 2)\) and in this case one can handle any fixed frequency. In the particular and important case \(\beta = 2\), it is possible to handle any fixed frequency far or close (but distinct) from the corresponding Minnaert resonance. The cluster of bubbles can be distributed to generate volumetric metamaterials but also low dimensional ones as metascreens and metawires.

MSC:

35R30 Inverse problems for PDEs
35C20 Asymptotic expansions of solutions to PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P25 Scattering theory for PDEs

References:

[1] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics (2005), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, with an appendix by Pavel Exner · Zbl 1078.81003
[2] Alessandrini, G.; Morassi, A.; Rosset, E., Detecting cavities by electrostatic boundary measurements, Inverse Probl., 18, 5, 1333-1353 (2002) · Zbl 1010.35117
[3] Alsaedi, A.; Ahmad, B.; Challa, D. P.; Kirane, M.; Sini, M., A cluster of many small holes with negative imaginary surface impedances may generate a negative refraction index, Math. Methods Appl. Sci., 39, 13, 3607-3622 (2016) · Zbl 1375.35285
[4] Ammari, H.; Challa, D. P.; Choudhury, A. P.; Sini, M., The equivalent media generated by bubbles of high contrasts: volumetric metamaterials and metasurfaces · Zbl 1439.35555
[5] Ammari, H.; Fitzpatrick, B.; Gontier, D.; Lee, H.; Zhang, H., Minnaert resonances for acoustic waves in bubbly media, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 35, 7, 1975-1998 (2018) · Zbl 1400.35230
[6] Ammari, H.; Fitzpatrick, B.; Gontier, D.; Lee, H.; Zhang, H., Sub-wavelength focusing of acoustic waves in bubbly media, Proc. R. Soc. A, 473, Article 20170469 pp. (2017) · Zbl 1404.76235
[7] Ammari, H.; Fitzpatrick, B.; Gontier, D.; Lee, H.; Zhang, H., A mathematical and numerical framework for bubble meta-screens, SIAM J. Appl. Math., 77, 1827-1850 (2017) · Zbl 1374.35434
[8] Ammari, H.; Fitzpatrick, B.; Lee, H.; Yu, S.; Zhang, H., Subwavelength phononic bandgap opening in bubbly media, J. Differ. Equ., 263, 5610-5629 (2017) · Zbl 1401.35331
[9] Ammari, H.; Kang, H., Reconstruction of Small Inhomogeneities from Boundary Measurements, Lect. Notes Math., vol. 1846 (2004), Springer-Verlag: Springer-Verlag Berlin, x+238 pp. · Zbl 1113.35148
[10] Ammari, H.; Kang, H., Polarization and Moment Tensors, with Applications to Inverse Problems and Effective Medium Theory, Appl. Math. Sci., vol. 162 (2007), Springer: Springer New York · Zbl 1220.35001
[11] Ammari, H.; Zhang, H., Effective medium theory for acoustic waves in bubbly fluids near Minnaert resonant frequency, SIAM J. Math. Anal., 49, 3252-3276 (2017) · Zbl 1378.35333
[12] Behrndt, J.; Frank, R. L.; Kuehn, C.; Lotoreichik, V.; Rohleder, J., Spectral theory for Schroedinger operators with \(δ\)-interactions supported on curves, Ann. Henri Poincaré, 18, 1305-1347 (2017) · Zbl 1378.81026
[13] Caflisch, R.; Miksis, M.; Papanicolaou, G.; Ting, L., Effective equations for wave propagation in a bubbly liquid, J. Fluid Mech., 153, 259-273 (1985) · Zbl 0605.76110
[14] Caflisch, R.; Miksis, M.; Papanicolaou, G.; Ting, L., Wave propagation in bubbly liquids at finite volume fraction, J. Fluid Mech., 160, 1-14 (1986) · Zbl 0604.76081
[15] Challa, D. P.; Sini, M., On the justification of the Foldy-Lax approximation for the acoustic scattering by small rigid bodies of arbitrary shapes, Multiscale Model. Simul., 12, 1, 55-108 (2014) · Zbl 1311.35070
[16] Challa, D. P.; Sini, M., Multiscale analysis of the acoustic scattering by many scatterers of impedance type, Z. Angew. Math. Phys., 67, 3 (2016), Art. 58 · Zbl 1352.35082
[17] Challa, D. P.; Mantile, A.; Sini, M., Characterization of the equivalent acoustic scattering for a cluster of an extremely large number of small holes
[18] Dassios, G.; Kleinman, R., Low Frequency Scattering, Oxford Math. Monogr., Oxford Sci. Publ. (2000), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York, xx+297 pp. · Zbl 0982.76002
[19] Foldy, L. L., The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 2, 67, 107-119 (1945) · Zbl 0061.47304
[20] Lamacz, A.; Schweizer, B., A negative index meta-material for Maxwell’s equations, SIAM J. Math. Anal., 48, 6, 4155-4174 (2016) · Zbl 1356.78136
[21] Lax, M., Multiple scattering of waves, Rev. Mod. Phys., 23, 287-310 (1951) · Zbl 0045.13406
[22] Martin, P. A., Multiple Scattering, Interaction of Time-Harmonic Waves with \(N\) Obstacles, Encycl. Math. Appl., vol. 107 (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1210.35002
[23] Panfilov, M., Macroscale Models of Flow Through Highly Heterogeneous Porous Media (2000), Kluwer Academic: Kluwer Academic Dordrecht, Boston, London
[24] Papanicolaou, G. C., Diffusion in random media, (Keller, J. P.; McLaughlin, D. W.; Papanicolaou, G. C., Surveys in Applied Mathematics, vol. 1 (1995), Plenum Press: Plenum Press New York) · Zbl 0846.60081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.