×

Standard input data for FEM-MBS coupling: Importing alternative model reduction methods into SIMPACK. (English) Zbl 1156.93324

Summary: Various research areas in the field of vehicle modelling, structural mechanics, engine dynamics, microelectromechanical systems (MEMS), etc. require the utilization of both multibody system formalism (MBS) and finite element method (FEM) in order to sufficiently capture the model’s dynamics. The FEM-MBS coupling is accomplished by reducing the dimension of the FE-modelled part and then importing it into an MBS-code for further simulation. When using commercial FEM (Nastran, ANSYS, etc.) as well as MBS (SIMPACK) software packages the necessary standard input data (SID) file is needed for the coupling procedure (FEMBS interface). A problem arises by the restriction that both commercial FEM and MBS codes support only two condensation methods (Guyan reduction and component mode synthesis (CMS)), thus disabling the direct application of any other reduction approach (e.g. from the field of control theory) that actually could be better. In this article, the theoretical background of an implemented FEM-MBS interface (MORPACK) is presented allowing the application of any kind of reduction method for FE-modelled structures and furthermore their import (Ritz approximation) into SIMPACK via the SID file generation. A benchmark problem (UIC60-rail) is used in order to capture in SIMPACK the discrepancy between the standardized CMS and the Krylov subspace method (KSM), as one of the alternatives offered by the interface.

MSC:

93B11 System structure simplification
93A30 Mathematical modelling of systems (MSC2010)
93C15 Control/observation systems governed by ordinary differential equations
93B40 Computational methods in systems theory (MSC2010)
Full Text: DOI

References:

[1] SIMPACK. 2004. ”FEMBS, SIMPACK Release 8.6”.
[2] Arnold M., Simulation algorithms in vehicle system dynamics, Technical Report 27, Martin-Luther-Universität Halle, Department of Mathematics and Computer Science (2004)
[3] Koutsovasilis, P. and Beitelschmidt, M.Simulation of constrained mechanical systems. Proceedings of 6th International Congress on Industrial and Applied Mathematics PAMM. Zürich. · Zbl 1298.34053
[4] DOI: 10.2514/3.2874 · doi:10.2514/3.2874
[5] Craig Jr, R. R. 2000. Coupling of substructures for dynamic analyses: an overview. AIAA Paper No. 2000-1573, AIAA Dynamics Specialists Conference. April52000, Atlanta, GA.
[6] DOI: 10.2514/3.4741 · Zbl 0159.56202 · doi:10.2514/3.4741
[7] Callahan, J. O.A procedure for an improved reduced system (IRS) model. Proceedings of 7th International Modal Analysis Conference. Las Vegas.
[8] Callahan, J. O., Avitabile, P. and Riemer, R.System equivalent reduction expansion process (SEREP). Proceedings of 7th International Modal Analysis Conference. Las Vegas.
[9] Krylov A., Otdel. Mat. i. estest. Nauk. 2 pp 491– (1931)
[10] DOI: 10.1007/3-540-27909-1 · Zbl 1066.65004 · doi:10.1007/3-540-27909-1
[11] DOI: 10.1137/1.9780898718713 · doi:10.1137/1.9780898718713
[12] Koutsovasilis, P. and Beitelschmidt, M.Model reduction comparison for the elastic crankshaft mechanism. Proceedings of 2nd International Operational Modal Analysis Conference (IOMAC). Copenhagen. Vol. 1, pp.95–106. · Zbl 1298.34053
[13] Beitelschmidt, M., Koutsovasilis, P. and Quarz, V.Zur Modellierung und Simulation der Kolbenmaschinendynamik unter Berücksichtigung von Strukturelastizitäten. Proceedings of ANSYS Conference and 24th CADFEM Users’ Meeting. Stuttgart.
[14] Koutsovasilis, P., Quarz, V. and Beitelschmidt, M.FEM–MKS coupling: transferring elastic structures into the SID file-format by the use of Krylov subspace method. Proceedings of ANSYS Conference and 25th CADFEM Users’ Meeting. Dresden. · Zbl 1156.93324
[15] Koutsovasilis, P. and Beitelschmidt, M.Model reduction of large elastic systems: a comparison study on the elastic piston rod. Proceedings of XII World Congress in Mechanism and Machine Science, IFToMM. Besancon. · Zbl 1298.34053
[16] DOI: 10.1017/CBO9780511610523 · doi:10.1017/CBO9780511610523
[17] Schwertassek R., Dynamik flexibler Mehrkörpersysteme (2005)
[18] DOI: 10.1023/A:1008314826838 · Zbl 0960.70006 · doi:10.1023/A:1008314826838
[19] DOI: 10.1080/08905459408905214 · doi:10.1080/08905459408905214
[20] Wallrapp O., Flexible multibody dynamics with space flight applications using SIMPACK, Workshop, Department of Precision and Micro Technology (2006)
[21] Otter, M., Hocke, M., Daberkow, A. and Leister, G.An object oriented data model for multibody systems. Proceedings of International Symposium on Advanced Multibody System Dynamics. Edited by: Schiehlen, W. pp.19–48. Dordrecht, Netherlands: Kluwer Academic.
[22] Love, A. E.H.A treatise on the mathematical theory of elasticity. First American Printing of the Fourth Edition 1927. New York: Dover Publications.
[23] Gloth G., Carl-Cranz Gesellschaft e.V, Oberpfaffenhofen (2001)
[24] Qu Z. Q., Model Order Reduction Techniques with Applications in Finite Element Analysis (2004) · Zbl 1074.74001
[25] DOI: 10.1006/jsvi.1995.0451 · Zbl 1049.74725 · doi:10.1006/jsvi.1995.0451
[26] Eid R., Parametric order reduction of proportionally damped second order systems
[27] ANSYS Advanced Analysis Techniques Guide (2007)
[28] Golub G. H., Matrix Computations, 3. ed. (1996) · Zbl 0865.65009
[29] DOI: 10.1137/1.9780898718003 · doi:10.1137/1.9780898718003
[30] DOI: 10.1137/1.9780898718881 · Zbl 1119.65021 · doi:10.1137/1.9780898718881
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.