×

Rigorous numerics for critical orbits in the quadratic family. (English) Zbl 1453.37077

Summary: We develop algorithms and techniques to compute rigorous bounds for finite pieces of orbits of the critical points, for intervals of parameter values, in the quadratic family of one-dimensional maps \(f_a(x) = a - x^2\). We illustrate the effectiveness of our approach by constructing a dynamically defined partition \(\mathcal{P}\) of the parameter interval \(\Omega = [1.4, 2]\) into almost \(4 \times 10^6\) subintervals, for each of which we compute to high precision the orbits of the critical points up to some time \(N\) and other dynamically relevant quantities, several of which can vary greatly, possibly spanning several orders of magnitude. We also subdivide \(\mathcal{P}\) into a family \(\mathcal{P}^+\) of intervals, which we call stochastic intervals, and a family \(\mathcal{P}^-\) of intervals, which we call regular intervals. We numerically prove that each interval \(\omega \in \mathcal{P}^+\) has an escape time, which roughly means that some iterate of the critical point taken over all the parameters in \(\omega\) has considerable width in the phase space. This suggests, in turn, that most parameters belonging to the intervals in \(\mathcal{P}^+\) are stochastic and most parameters belonging to the intervals in \(\mathcal{P}^-\) are regular, thus the names. We prove that the intervals in \(\mathcal{P}^+\) occupy almost 90% of the total measure of \(\Omega\). The software and the data are freely available at , and a web page is provided for carrying out the calculations. The ideas and procedures can be easily generalized to apply to other parameterized families of dynamical systems.
©2020 American Institute of Physics

MSC:

37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37C35 Orbit growth in dynamical systems

Software:

MPFR

References:

[1] Alexander, A.; Matheus, C., Decidability of chaos for some families of dynamical systems, Found. Comput. Math., 4, 3, 269-275 (2004) · Zbl 1083.37031 · doi:10.1007/s10208-003-0085-y
[2] Avila, A.; Lyubich, M.; de Melo, W., Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math., 154, 3, 451-550 (2003) · Zbl 1050.37018 · doi:10.1007/s00222-003-0307-6
[3] Benedicks, M.; Carleson, L., On iterations of \(1 - a x^2\) on \((-1, 1)\), Ann. Math., 122, 1-25 (1985) · Zbl 0597.58016 · doi:10.2307/1971367
[4] Benedicks, M.; Carleson, L., The dynamics of the Hénon map, Ann. Math., 133, 73-169 (1991) · Zbl 0724.58042 · doi:10.2307/2944326
[5] Day, S.; Kokubu, H.; Luzzatto, S.; Mischaikow, K.; Oka, H.; Pilarczyk, P., Quantitative hyperbolicity estimates in one-dimensional dynamics, Nonlinearity, 21, 1967-87 (2008) · Zbl 1154.37324 · doi:10.1088/0951-7715/21/9/002
[6] Galias, Z., Systematic search for wide periodic windows and bounds for the set of regular parameters for the quadratic map, Chaos, 27, 053106 (2017) · Zbl 1387.37036 · doi:10.1063/1.4983172
[7] Golmakani, A.; Luzzatto, S.; Pilarczyk, P., Uniform expansivity outside a critical neighborhood in the quadratic family, Exp. Math., 25, 2, 116-124 (2016) · Zbl 1365.37037 · doi:10.1080/10586458.2015.1048011
[8] Graczyk, J.; Swiatek, G., Generic hyperbolicity in the logistic family, Ann. Math., 146, 1-52 (1997) · Zbl 0936.37015 · doi:10.2307/2951831
[9] Fousse, L.; Hanrot, G.; Lefèvre, V.; Pélissier, P.; Zimmermann, P., MPFR: A multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Soft., 33, 2, 13 (2007) · Zbl 1365.65302 · doi:10.1145/1236463.1236468
[10] IEEE 754-2019—IEEE Standard for Floating-Point Arithmetic, see https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html (last accessed March 11, 2020).
[11] Jakobson, M. V., Absolutely continuous invariant measures for one parameter families of one dimensional maps, Commun. Math. Phys., 81, 39-88 (1981) · Zbl 0497.58017 · doi:10.1007/BF01941800
[12] Jakobson, M., “Piecewise smooth maps with absolutely continuous invariant measures and uniformly scaled Markov partitions,” in Proceedings of Symposia in Pure Mathematics. Smooth Ergodic Theory and its Applications (American Mathematical Society, Providence, RI, 2001), Vol. 69, pp. 825-881. · Zbl 1006.37016
[13] Kincaid, D.; Cheney, W., Numerical Analysis. Mathematics of Scientific Computing (1991), Brooks/Cole Publishing Company: Brooks/Cole Publishing Company, Pacific Grove, CA · Zbl 0745.65001
[14] Luzzatto, S.; Tucker, W., Non-uniformly expanding dynamics in maps with criticalities and singularities, Publ. Math. IHES, 89, 179-226 (1999) · Zbl 0978.37029 · doi:10.1007/BF02698857
[15] Luzzatto, S.; Viana, M., Positive Lyapunov exponents for Lorenz-like maps with criticalities, Astérisque, 261, 201-237 (2000) · Zbl 0944.37025
[16] Luzzatto, S.; Takahashi, H., Computable starting conditions for the existence of nonuniform hyperbolicity in one-dimensional maps, Nonlinearity, 19, 1657-1695 (2006) · Zbl 1113.37021 · doi:10.1088/0951-7715/19/7/013
[17] Lyubich, M., Dynamics of quadratic polynomials, I, Acta Math., 178, 185-247 (1997) · Zbl 0908.58053 · doi:10.1007/BF02392694
[18] Lyubich, M., Dynamics of quadratic polynomials, II, Acta Math., 178, 247-97 (1997) · Zbl 0908.58053 · doi:10.1007/BF02392694
[19] Lyubich, M., Almost every real quadratic map is either regular or stochastic, Ann. Math., 156, 1, 1 (2002) · Zbl 1160.37356 · doi:10.2307/3597183
[20] Moore, R. E., Interval Analysis (1966), Prentice-Hall, Inc.: Prentice-Hall, Inc., Englewood Cliffs, N.J. · Zbl 0176.13301
[21] Pacifico, M. J.; Rovella, A.; Viana, M., Infinite-modal maps with global chaotic behavior, Ann. Math., 148, 2, 441-484 (1998) · Zbl 0916.58029 · doi:10.2307/121002
[22] Pilarczyk, P., “Quadratic map software,” see http://www.pawelpilarczyk.com/quadr/ (last accessed June 11, 2020).
[23] Pilarczyk, P., Stochastic Intervals for the Family of Quadratic Maps (2020), Gdańsk University of Technology · doi:10.34808/szfn-gv40
[24] Tucker, W.; Wilczak, D., A rigorous lower bound for the stability regions of the quadratic map, Physica D, 238, 1923-1936 (2009) · Zbl 1197.37060 · doi:10.1016/j.physd.2009.06.020
[25] Tucker, W., Validated Numerics: A Short Introduction to Rigorous Computations (2011), Princeton University Press · Zbl 1231.65077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.