×

A rigorous lower bound for the stability regions of the quadratic map. (English) Zbl 1197.37060

The authors take the quadratic map \(Q_a(x) = ax(1 - x)\), where \(Q_a: [0,1] \rightarrow [0,1]\), and prove that the set of regular parameters for the quadratic map \(Q_a(x)\) satisfies the lower bound \(|\mathbb{R} \cap [2,4]|\geq 1.61394824439594656781\), where \(\operatorname{Re}\) denotes the set of regular parameters.
Partitioning the parameter plane \(A =[2,4]\) into subintervals \(A_i\) the authors prove that for each subinterval \(A_i\) the quadratic map \(Q_a(x)\) has a unique stable periodic orbit which persists for all \(a \in A_i\).
The authors prove the existence of period-doubling bifurcations. From these results they obtain a non-trivial upper bound on the set of stochastic parameters for \(Q_a(x)\).

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
Full Text: DOI

References:

[1] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459 (1976) · Zbl 1369.37088
[2] Collet, P.; Eckmann, J.-P., Iterated Maps on the Interval as Dynamical Systems (1980), Birkhuser: Birkhuser Boston, MA · Zbl 0441.58011
[3] H. Epstein, New proofs of the existence of the feigenbaum functions, Inst. Hautes tudes Sco., Report No. IHES/P/85/55, 1985; H. Epstein, New proofs of the existence of the feigenbaum functions, Inst. Hautes tudes Sco., Report No. IHES/P/85/55, 1985 · Zbl 0608.30031
[4] Feigenbaum, M. J., The universal metric properties of nonlinear transformations, J. Stat. Phys., 21, 669-706 (1979) · Zbl 0515.58028
[5] Lanford, O. E., A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc.., 6, 427-434 (1982) · Zbl 0487.58017
[6] Lyubich, M., Almost every real quadratic map is either regular or stochastic, Ann. of Math., 156, 1-78 (2002) · Zbl 1160.37356
[7] Benedicks, M.; Carleson, L., On iterations of \(1 - a x^2\) on \((- 1, 1)\), Ann. of Math., 122, 2, 1-25 (1985) · Zbl 0597.58016
[8] Benedicks, M.; Carleson, L., The dynamics of the Hnon map, Ann. of Math., 133, 2, 73-169 (1991) · Zbl 0724.58042
[9] Jakobson, M. V., Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys., 81, 39-88 (1981) · Zbl 0497.58017
[10] Luzzatto, S.; Takahashi, H., Computable starting conditions for the existence of nonuniform hyperbolicity in one-dimensional maps, Nonlinearity, 19, 1657-1695 (2006) · Zbl 1113.37021
[11] G. Swiatek, Hyperbolicity is dense in the real quadratic family. Stony Brook IMS Preprint 1992/10; G. Swiatek, Hyperbolicity is dense in the real quadratic family. Stony Brook IMS Preprint 1992/10
[12] C. Simó, Private communication, 2008; C. Simó, Private communication, 2008
[13] D. Wilczak, P. Zgliczyński, Period doubling in the Rössler system — a computer assisted proof. Found. Comp. Math., 2009. doi:10.1007/s10208-009-9040-x; D. Wilczak, P. Zgliczyński, Period doubling in the Rössler system — a computer assisted proof. Found. Comp. Math., 2009. doi:10.1007/s10208-009-9040-x · Zbl 1177.37083
[14] Alefeld, G.; Herzberger, J., Introduction to Interval Computations (1983), Academic Press: Academic Press New York · Zbl 0552.65041
[15] Krawczyk, R., A class of interval-Newton-operators, Computing, 37, 2, 179-183 (1986) · Zbl 0579.65050
[16] Krawczyk, R.; Neumaier, A., An improved interval-Newton-operator, Freiburger Intervall-Berichte, 84, 4, 1-26 (1984)
[17] Galias, Z., Proving the existence of long periodic orbits in 1D maps using Newton method and backward shooting, Topol. Appl., 124, 1, 25-37 (2002) · Zbl 1009.37027
[18] A. Douady, J. Hubbard, Etude dynamique des polynômes complexes, Documents mathématiques, Société Mathématique de France, 2007; A. Douady, J. Hubbard, Etude dynamique des polynômes complexes, Documents mathématiques, Société Mathématique de France, 2007 · Zbl 0552.30018
[19] Simó, C.; Tatjer, J. C., Windows of attraction of the logistic map, (Mira, C.; etal., European Conference on Iteration Theory. European Conference on Iteration Theory, ECIT 89, Batschuns (Austria) (1991), World Scientific: World Scientific Singapore), 335-342 · Zbl 0985.54513
[20] See D. Wilczak, http://www.ii.uj.edu.pl/ wilczak; See D. Wilczak, http://www.ii.uj.edu.pl/ wilczak
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.