×

Cluster algebras and the subalgebra constructibility of the seven-particle remainder function. (English) Zbl 1409.81149

Summary: We review various aspects of cluster algebras and the ways in which they appear in the study of loop-level amplitudes in planar \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory. In particular, we highlight the different forms of cluster-algebraic structure that appear in this theory’s two-loop MHV amplitudes – considered as functions, symbols, and at the level of their Lie cobracket – and recount how the ‘nonclassical’ part of these amplitudes can be decomposed into specific functions evaluated on the \(A_2\) or \(A_3\) subalgebras of Gr\((4,n)\). We then extend this line of inquiry by searching for other subalgebras over which these amplitudes can be decomposed. We focus on the case of seven-particle kinematics, where we show that the nonclassical part of the two-loop MHV amplitude is also constructible out of functions evaluated on the \(D_5\) and \(A_5\) subalgebras of Gr(4,7), and that these decompositions are themselves decomposable in terms of the same \(A_4\) function. These nested decompositions take an especially canonical form, which is dictated in each case by constraints arising from the automorphism group of the parent algebra.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81U20 \(S\)-matrix theory, etc. in quantum theory
17B45 Lie algebras of linear algebraic groups
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems

References:

[1] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016). · Zbl 1365.81004
[2] J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE]. · doi:10.1007/JHEP01(2014)091
[3] J.L. Bourjaily, Positroids, Plabic Graphs and Scattering Amplitudes in Mathematica, arXiv:1212.6974 [INSPIRE].
[4] L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE]. · Zbl 1342.81159 · doi:10.1007/JHEP12(2013)049
[5] L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in \[planarN=4 \mathcal{N}=4\] super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE]. · Zbl 1333.81238
[6] J.M. Drummond, G. Papathanasiou and M. Spradlin, A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP03 (2015) 072 [arXiv:1412.3763] [INSPIRE]. · doi:10.1007/JHEP03(2015)072
[7] S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE]. · doi:10.1103/PhysRevLett.117.241601
[8] L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE]. · Zbl 1377.81197 · doi:10.1007/JHEP02(2017)137
[9] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in \[planarN=4 \mathcal{N}=4\] super Yang-Mills, JHEP12 (2011) 066 [arXiv:1105.5606] [INSPIRE]. · Zbl 1306.81082
[10] J. Golden and M. Spradlin, An analytic result for the two-loop seven-point MHV amplitude \[inN=4 \mathcal{N}=4\] SYM, JHEP08 (2014) 154 [arXiv:1406.2055] [INSPIRE].
[11] J. Golden and M. Spradlin, The differential of all two-loop MHV amplitudes \[inN=4 \mathcal{N}= 4\] Yang-Mills theory, JHEP09 (2013) 111 [arXiv:1306.1833] [INSPIRE]. · Zbl 1342.81585
[12] J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster Polylogarithms for Scattering Amplitudes, J. Phys.A 47 (2014) 474005 [arXiv:1401.6446] [INSPIRE]. · Zbl 1304.81123
[13] J. Golden and M. Spradlin, A Cluster Bootstrap for Two-Loop MHV Amplitudes, JHEP02 (2015) 002 [arXiv:1411.3289] [INSPIRE]. · doi:10.1007/JHEP02(2015)002
[14] J. Drummond, J. Foster and Ö. Gürdoğan, Cluster Adjacency Properties of Scattering Amplitudes in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.120 (2018) 161601 [arXiv:1710.10953] [INSPIRE].
[15] S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of \[PlanarN=4 \mathcal{N}=4\] Super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE]. · Zbl 1397.81347
[16] L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE]. · doi:10.1007/JHEP10(2014)065
[17] L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE]. · doi:10.1007/JHEP01(2016)053
[18] L.J. Dixon, M. von Hippel, A.J. McLeod and J. Trnka, Multi-loop positivity of the \[planarN=4 \mathcal{N}=4\] SYM six-point amplitude, JHEP02 (2017) 112 [arXiv:1611.08325] [INSPIRE]. · Zbl 1377.81101
[19] J. Drummond, J. Foster and Ö. Gürdoğan, Cluster adjacency beyond MHV, arXiv:1810.08149 [INSPIRE]. · Zbl 1414.81250
[20] J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop integrals, JHEP04 (2011) 083 [arXiv:1010.3679] [INSPIRE]. · Zbl 1250.81064 · doi:10.1007/JHEP04(2011)083
[21] J.L. Bourjaily, A.J. McLeod, M. von Hippel and M. Wilhelm, Rationalizing Loop Integration, JHEP08 (2018) 184 [arXiv:1805.10281] [INSPIRE]. · Zbl 1396.81194 · doi:10.1007/JHEP08(2018)184
[22] J. Henn, E. Herrmann and J. Parra-Martinez, Bootstrapping two-loop Feynman integrals for \[planarN=4 \mathcal{N}=4\] SYM, JHEP10 (2018) 059 [arXiv:1806.06072] [INSPIRE]. · Zbl 1402.81157
[23] S. Caron-Huot, L.J. Dixon, M. von Hippel, A.J. McLeod and G. Papathanasiou, The Double Pentaladder Integral to All Orders, JHEP07 (2018) 170 [arXiv:1806.01361] [INSPIRE]. · Zbl 1395.81276 · doi:10.1007/JHEP07(2018)170
[24] I. Prlina, M. Spradlin, J. Stankowicz, S. Stanojevic and A. Volovich, All-Helicity Symbol Alphabets from Unwound Amplituhedra, JHEP05 (2018) 159 [arXiv:1711.11507] [INSPIRE]. · Zbl 1391.81133 · doi:10.1007/JHEP05(2018)159
[25] M.F. Paulos, M. Spradlin and A. Volovich, Mellin Amplitudes for Dual Conformal Integrals, JHEP08 (2012) 072 [arXiv:1203.6362] [INSPIRE]. · Zbl 1397.81166 · doi:10.1007/JHEP08(2012)072
[26] S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP10 (2012) 026 [arXiv:1205.0801] [INSPIRE]. · doi:10.1007/JHEP10(2012)026
[27] J.L. Bourjaily and J. Trnka, Local Integrand Representations of All Two-Loop Amplitudes in Planar SYM, JHEP08 (2015) 119 [arXiv:1505.05886] [INSPIRE]. · Zbl 1388.81710 · doi:10.1007/JHEP08(2015)119
[28] J.L. Bourjaily, E. Herrmann and J. Trnka, Prescriptive Unitarity, JHEP06 (2017) 059 [arXiv:1704.05460] [INSPIRE]. · Zbl 1380.81388
[29] J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel and M. Wilhelm, Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms, Phys. Rev. Lett.120 (2018) 121603 [arXiv:1712.02785] [INSPIRE]. · doi:10.1103/PhysRevLett.120.121603
[30] J.L. Bourjaily, Y.-H. He, A.J. Mcleod, M. Von Hippel and M. Wilhelm, Traintracks through Calabi-Yau Manifolds: Scattering Amplitudes beyond Elliptic Polylogarithms, Phys. Rev. Lett.121 (2018) 071603 [arXiv:1805.09326] [INSPIRE].
[31] J.L. Bourjaily, A.J. McLeod, M. von Hippel and M. Wilhelm, A (Bounded) Bestiary of Feynman Integral Calabi-Yau Geometries, arXiv:1810.07689 [INSPIRE]. · Zbl 1434.81033
[32] T. Harrington and M. Spradlin, Cluster Functions and Scattering Amplitudes for Six and Seven Points, JHEP07 (2017) 016 [arXiv:1512.07910] [INSPIRE]. · Zbl 1380.81402 · doi:10.1007/JHEP07(2017)016
[33] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Am. Math. Soc.15 (2002) 497 [math/0104151]. · Zbl 1021.16017
[34] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Postnikov and J. Trnka, On-Shell Structures of MHV Amplitudes Beyond the Planar Limit, JHEP06 (2015) 179 [arXiv:1412.8475] [INSPIRE]. · Zbl 1388.81272 · doi:10.1007/JHEP06(2015)179
[35] V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Annales Sci. Ecole Norm. Sup.42 (2009) 865 [math/0311245]. · Zbl 1180.53081
[36] M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J.3 (2003) 899, [math/0208033]. · Zbl 1057.53064
[37] J. Golden and A.J. McLeod, in progress.
[38] C. Vergu, Polylogarithm identities, cluster algebras and the N = 4 supersymmetric theory, 2015, arXiv:1512.08113 [INSPIRE]. · Zbl 1444.81037
[39] J.S. Scott, Grassmannians and cluster algebras, Proc. Lond. Math. Soc.92 (2006) 345 [math/0311148]. · Zbl 1088.22009
[40] L.J. Dixon, A brief introduction to modern amplitude methods, in Proceedings, 2012 European School of High-Energy Physics (ESHEP 2012), La Pommeraye, Anjou, France, June 06-19, 2012, pp. 31-67 (2014) [DOI:https://doi.org/10.5170/CERN-2014-008.31] [arXiv:1310.5353] [INSPIRE].
[41] H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE]. · Zbl 1332.81010
[42] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
[43] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys.B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE]. · Zbl 1203.81175
[44] Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev.D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
[45] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys.B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE]. · Zbl 1194.81316
[46] J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE]. · doi:10.1088/1126-6708/2007/01/064
[47] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev.D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].
[48] Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev.D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
[49] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/064
[50] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE]. · Zbl 1203.81112
[51] S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math.154 (2003) 63 [math/0208229]. · Zbl 1054.17024
[52] D. Parker, A. Scherlis, M. Spradlin and A. Volovich, Hedgehog bases for Ancluster polylogarithms and an application to six-point amplitudes, JHEP11 (2015) 136 [arXiv:1507.01950] [INSPIRE]. · Zbl 1388.81186 · doi:10.1007/JHEP11(2015)136
[53] M. Sherman-Bennett, Combinatorics of χ -variables in finite type cluster algebras, arXiv:1803.02492. · Zbl 1411.05297
[54] W. Chang and B. Zhu, Cluster automorphism groups of cluster algebras of finite type, arXiv:1506.01950. · Zbl 1379.16022
[55] K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc.83 (1977) 831 [INSPIRE]. · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[56] F.C. Brown, Multiple zeta values and periods of moduli spacesM¯0,nℝ \[{\overline{\mathfrak{M}}}_{0,n}\left(\mathbb{R}\right) \], Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419]. · Zbl 1216.11079
[57] A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE]. · Zbl 1360.11077
[58] S. Caron-Huot, L.J. Dixon, M. von Hippel, A.J. McLeod and G. Papathanasiou, in progress.
[59] C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE]. · Zbl 1397.81355 · doi:10.1007/JHEP10(2012)075
[60] C. Duhr, Mathematical aspects of scattering amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), Boulder, Colorado, June 2-27, 2014, pp. 419-476, (2015) [DOI:https://doi.org/10.1142/9789814678766_0010] [arXiv:1411.7538] [INSPIRE]. · Zbl 1334.81100
[61] H. Gangl, Multiple polylogarithms in weight 4, arXiv:1609.05557. · Zbl 1210.11075
[62] F. Brown, Mixed Tate motives over ℤ, arXiv:1102.1312. · Zbl 1278.19008
[63] F. Brown, Feynman amplitudes, coaction principle and cosmic Galois group, Commun. Num. Theor. Phys.11 (2017) 453 [arXiv:1512.06409] [INSPIRE]. · Zbl 1395.81117 · doi:10.4310/CNTP.2017.v11.n3.a1
[64] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059. · Zbl 0919.11080
[65] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE]. · doi:10.1103/PhysRevLett.105.151605
[66] F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE]. · Zbl 1321.11087
[67] C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE]. · Zbl 1397.16028 · doi:10.1007/JHEP08(2012)043
[68] S.J. Bloch, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, American Mathematical Society (2000). · Zbl 0958.19001
[69] A. Suslin, K3 of a field and the bloch group, Proc. Stekov Inst. Math.183 (1990) 217. · Zbl 0741.19005
[70] A.B. Goncharov, Polylogarithms and motivic Galois groups, in Motives, Proc. Symp. Pure Math.55 (1991) 43, Seattle, WA, American Mathematical Society, Providence, RI (1994). · Zbl 0842.11043
[71] N. Dan, Sur la conjecture de Zagier pour n = 4, arXiv:0809.3984.
[72] H. Gangl, The Grassmannian complex and Goncharov’s motivic complex in weight 4, arXiv:1801.07816.
[73] A.B. Goncharov and D. Rudenko, Motivic correlators, cluster varieties and Zagier’s conjecture on ζF (4), arXiv:1803.08585.
[74] L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic Bubble Ansatz, JHEP09 (2011) 032 [arXiv:0911.4708] [INSPIRE]. · Zbl 1301.81162 · doi:10.1007/JHEP09(2011)032
[75] G. Yang, A simple collinear limit of scattering amplitudes at strong coupling, JHEP03 (2011) 087 [arXiv:1006.3306] [INSPIRE]. · Zbl 1301.81315 · doi:10.1007/JHEP03(2011)087
[76] N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
[77] O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Physica Acta33 (1960) 257. · Zbl 0131.44201
[78] O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II, Helv. Physica Acta33 (1960) 347. · Zbl 0131.44202
[79] K.E. Cahill and H.P. Stapp, Optical Theorems and Steinmann Relations, Annals Phys.90 (1975) 438 [INSPIRE]. · doi:10.1016/0003-4916(75)90006-8
[80] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
[81] J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic Feynman integrals and pure functions, arXiv:1809.10698 [INSPIRE]. · Zbl 1409.81162
[82] G. Yang, Scattering amplitudes at strong coupling for 4K gluons, JHEP12 (2010) 082 [arXiv:1004.3983] [INSPIRE]. · Zbl 1294.81297 · doi:10.1007/JHEP12(2010)082
[83] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[84] F. Brown, Notes on Motivic Periods, arXiv:1512.06410. · Zbl 1390.14024
[85] S. Abreu, R. Britto, C. Duhr and E. Gardi, Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction, Phys. Rev. Lett.119 (2017) 051601 [arXiv:1703.05064] [INSPIRE]. · Zbl 1383.81321
[86] S. Abreu, R. Britto, C. Duhr and E. Gardi, Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case, JHEP12 (2017) 090 [arXiv:1704.07931] [INSPIRE]. · Zbl 1383.81321 · doi:10.1007/JHEP12(2017)090
[87] J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series, JHEP08 (2018) 014 [arXiv:1803.10256] [INSPIRE]. · doi:10.1007/JHEP08(2018)014
[88] F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.