×

The cosmic Galois group and extended Steinmann relations for planar \(\mathcal{N} = 4\) SYM amplitudes. (English) Zbl 1423.81174

Summary: We describe the minimal space of polylogarithmic functions that is required to express the six-particle amplitude in planar \(\mathcal{N} = 4\) super-Yang-Mills theory through six and seven loops, in the NMHV and MHV sectors respectively. This space respects a set of extended Steinmann relations that restrict the iterated discontinuity structure of the amplitude, as well as a cosmic Galois coaction principle that constrains the functions and the transcendental numbers that can appear in the amplitude at special kinematic points. To put the amplitude into this space, we must divide it by the BDS-like ansatz and by an additional zeta-valued constant \(\rho\). For this normalization, we conjecture that the extended Steinmann relations and the coaction principle hold to all orders in the coupling. We describe an iterative algorithm for constructing the space of hexagon functions that respects both constraints. We highlight further simplifications that begin to occur in this space of functions at weight eight, and distill the implications of imposing the coaction principle to all orders. Finally, we explore the restricted spaces of transcendental functions and constants that appear in special kinematic configurations, which include polylogarithms involving square, cube, fourth and sixth roots of unity.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81U05 \(2\)-body potential quantum scattering theory

References:

[1] L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys.B 121 (1977) 77 [INSPIRE].
[2] F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, supergravity theories and the dual spinor model, Nucl. Phys.B 122 (1977) 253 [INSPIRE].
[3] S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys.B 213 (1983) 149. · doi:10.1016/0550-3213(83)90179-7
[4] L. Brink, O. Lindgren and B.E.W. Nilsson, The ultraviolet finiteness of the N = 4 Yang-Mills theory, Phys. Lett.123B (1983) 323 [INSPIRE].
[5] P.S. Howe, K.S. Stelle and P.K. Townsend, Miraculous ultraviolet cancellations in supersymmetry made manifest, Nucl. Phys.B 236 (1984) 125 [INSPIRE].
[6] J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE].
[7] Z. Bern et al., The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev.D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].
[8] Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev.D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
[9] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/064
[10] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE]. · Zbl 1203.81112
[11] J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys.B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE]. · Zbl 1219.81227
[12] A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys.B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE]. · Zbl 1273.81201
[13] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys.B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE]. · Zbl 1219.81191
[14] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys.B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE]. · Zbl 1203.81175
[15] L.F. Alday and R. Roiban, Scattering amplitudes, Wilson loops and the string/gauge theory correspondence, Phys. Rept.468 (2008) 153 [arXiv:0807.1889] [INSPIRE]. · doi:10.1016/j.physrep.2008.08.002
[16] T. Adamo, M. Bullimore, L. Mason and D. Skinner, Scattering Amplitudes and Wilson Loops in Twistor Space, J. Phys.A 44 (2011) 454008 [arXiv:1104.2890] [INSPIRE]. · Zbl 1270.81129
[17] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
[18] J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev.D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].
[19] Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev.D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
[20] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys.B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE]. · Zbl 1194.81316 · doi:10.1016/j.nuclphysb.2009.02.015
[21] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE]. · Zbl 1306.81092
[22] K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc.83 (1977) 831. · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[23] A.B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math.114 (1995) 197. · Zbl 0863.19004 · doi:10.1006/aima.1995.1045
[24] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett.5 (1998) 497 [arXiv:1105.2076] [INSPIRE]. · Zbl 0961.11040 · doi:10.4310/MRL.1998.v5.n4.a7
[25] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003
[26] J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisonek, Special values of multiple polylogarithms, Trans. Am. Math. Soc.353 (2001) 907 [math/9910045]. · Zbl 1002.11093
[27] S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys.43 (2002) 3363 [hep-ph/0110083] [INSPIRE]. · Zbl 1060.33007
[28] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE]. · doi:10.1103/PhysRevLett.105.151605
[29] C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE]. · Zbl 1397.81355 · doi:10.1007/JHEP10(2012)075
[30] J. Golden et al., Motivic amplitudes and cluster coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE].
[31] J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster polylogarithms for scattering amplitudes, J. Phys.A 47 (2014) 474005 [arXiv:1401.6446] [INSPIRE]. · Zbl 1304.81123
[32] J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP03 (2015) 072 [arXiv:1412.3763] [INSPIRE]. · doi:10.1007/JHEP03(2015)072
[33] J. Golden and M. Spradlin, A cluster bootstrap for two-loop MHV amplitudes, JHEP02 (2015) 002 [arXiv:1411.3289] [INSPIRE]. · doi:10.1007/JHEP02(2015)002
[34] S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, J. Am. Math. Soc.15 (2002) 497 [math/0104151]. · Zbl 1021.16017
[35] S. Fomin and A. Zelevinsky, Cluster algebras II: finite type classification, Invent. Math.154 (2003) 63 [math/0208229]. · Zbl 1054.17024
[36] M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J.3 (2003) 899 [math/0208033]. · Zbl 1057.53064
[37] V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér.42 (2009) 865 [math/0311245]. · Zbl 1180.53081
[38] L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP01 (2012) 024 [arXiv:1111.1704] [INSPIRE]. · Zbl 1306.81093 · doi:10.1007/JHEP01(2012)024
[39] L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE]. · Zbl 1342.81159
[40] L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE]. · Zbl 1333.81238 · doi:10.1007/JHEP06(2014)116
[41] L.J. Dixon et al., Bootstrapping six-gluon scattering in planar N = 4 super-Yang-Mills theory, PoS(LL2014) 077 [arXiv:1407.4724] [INSPIRE].
[42] L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE].
[43] L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE].
[44] S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a five-loop amplitude using Steinmann relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE]. · doi:10.1103/PhysRevLett.117.241601
[45] S. Caron-Huot et al., Six-gluon amplitudes in planarN \[\mathcal{N} = 4\] super-Yang-Mills theory at six and seven loops, JHEP08 (2019) 016 [arXiv:1903.10890] [INSPIRE]. · Zbl 1421.81136 · doi:10.1007/JHEP08(2019)016
[46] L.J. Dixon et al., Heptagons from the Steinmann Cluster Bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE]. · Zbl 1377.81197
[47] J. Drummond, J. Foster, Ö. Gürdoğan and G. Papathanasiou, Cluster adjacency and the four-loop NMHV heptagon, JHEP03 (2019) 087 [arXiv:1812.04640] [INSPIRE]. · Zbl 1414.81251 · doi:10.1007/JHEP03(2019)087
[48] A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J.128 (2005) 209 [math/0208144]. · Zbl 1095.11036
[49] F. Brown, On the decomposition of motivic multiple zeta values, Adv. Studies Pure Math.63 (2012) 31 [arXiv:1102.1310] [INSPIRE]. · Zbl 1321.11087 · doi:10.2969/aspm/06310031
[50] F. Brown, Mixed Tate motives over ℤ, Ann. Math.175 (2012) 949 [arXiv:1102.1312]. · Zbl 1278.19008
[51] C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE]. · Zbl 1397.16028
[52] F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP11 (2012) 114 [arXiv:1209.2722] [INSPIRE]. · Zbl 1397.81071 · doi:10.1007/JHEP11(2012)114
[53] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059. · Zbl 0919.11080
[54] F.C. Brown, Multiple zeta values and periods of moduli spacesM¯\[0 {\overline{\mathfrak{M}}}_0 \],n(ℝ), Ann. Sci. Ecole Norm.Sup.42 (2009) 371 [math/0606419]. · Zbl 1216.11079
[55] F. Brown, Notes on motivic periods, arXiv:1512.06410. · Zbl 1390.14024
[56] P. Cartier, A mad day’s work: from Grothendieck to Connes and Kontsevich, the evolution of concepts of space and symmetry, Bull. Amer. Math. Soc.38 (2001) 389. · Zbl 0985.01005 · doi:10.1090/S0273-0979-01-00913-2
[57] Y. André, Ambiguity theory, old and new, arXiv:0805.2568. · Zbl 1189.11050
[58] Y. André, Galois theory, motives and transcendental numbers, arXiv:0805.2569. · Zbl 1219.11109
[59] F. Brown, Feynman amplitudes, coaction principle and cosmic Galois group, Commun. Num. Theor. Phys.11 (2017) 453 [arXiv:1512.06409] [INSPIRE]. · Zbl 1395.81117
[60] D.J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett.B 393 (1997) 403 [hep-th/9609128] [INSPIRE]. · Zbl 0946.81028 · doi:10.1016/S0370-2693(96)01623-1
[61] O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys.08 (2014) 589 [arXiv:1302.6445] [INSPIRE]. · Zbl 1320.81075 · doi:10.4310/CNTP.2014.v8.n4.a1
[62] E. Panzer and O. Schnetz, The Galois coaction on ϕ4periods, Commun. Num. Theor. Phys.11 (2017) 657 [arXiv:1603.04289] [INSPIRE]. · Zbl 1439.81046
[63] S. Laporta, High-precision calculation of the 4-loop contribution to the electron g − 2 in QED, Phys. Lett.B 772 (2017) 232 [arXiv:1704.06996] [INSPIRE]. · doi:10.1016/j.physletb.2017.06.056
[64] O. Schnetz, The Galois coaction on the electron anomalous magnetic moment, Commun. Num. Theor. Phys.12 (2018) 335 [arXiv:1711.05118] [INSPIRE]. · Zbl 1393.81035 · doi:10.4310/CNTP.2018.v12.n2.a4
[65] O. Schlotterer and S. Stieberger, Motivic multiple zeta values and superstring amplitudes, J. Phys.A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE]. · Zbl 1280.81112
[66] F. Brown and C. Dupont, Single-valued integration and superstring amplitudes in genus zero, arXiv:1810.07682 [INSPIRE]. · Zbl 1483.81117
[67] D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP12 (2011) 011 [arXiv:1102.0062] [INSPIRE]. · Zbl 1306.81153 · doi:10.1007/JHEP12(2011)011
[68] L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, JHEP09 (2011) 032 [arXiv:0911.4708] [INSPIRE]. · Zbl 1301.81162 · doi:10.1007/JHEP09(2011)032
[69] G. Yang, A simple collinear limit of scattering amplitudes at strong coupling, JHEP03 (2011) 087 [arXiv:1006.3306] [INSPIRE]. · Zbl 1301.81315 · doi:10.1007/JHEP03(2011)087
[70] O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Physica Acta33 (1960) 257. · Zbl 0131.44201
[71] Steinmann, O.; Kommutatoren, W-F u. r., No article title, II, Helv. Phys. Acta, 33, 347 (1960) · Zbl 0131.44202
[72] K.E. Cahill and H.P. Stapp, Optical theorems and Steinmann relations, Annals Phys.90 (1975) 438 [INSPIRE]. · doi:10.1016/0003-4916(75)90006-8
[73] J. Drummond, J. Foster and Ö. Gürdoğan, Cluster adjacency properties of scattering amplitudes in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.120 (2018) 161601 [arXiv:1710.10953] [INSPIRE]. · doi:10.1103/PhysRevLett.120.161601
[74] J. Drummond, J. Foster and Ö. Gürdoğan, Cluster adjacency beyond MHV, JHEP03 (2019) 086 [arXiv:1810.08149] [INSPIRE]. · Zbl 1414.81250 · doi:10.1007/JHEP03(2019)086
[75] J. Golden, A.J. McLeod, M. Spradlin and A. Volovich, The Sklyanin bracket and cluster adjacency at all multiplicity, JHEP03 (2019) 195 [arXiv:1902.11286] [INSPIRE]. · Zbl 1414.81241 · doi:10.1007/JHEP03(2019)195
[76] O. Schnetz, hyperlogprocedures, https://www.math.fau.de/person/oliver-schnetz/.
[77] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE]. · Zbl 1342.81291 · doi:10.1007/JHEP05(2013)135
[78] L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE].
[79] H. Elvang and Y.-t. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE]. · Zbl 1332.81010
[80] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
[81] N. Arkani-Hamed et al., Grassmannian geometry of scattering amplitudes, arXiv:1212.5605 [INSPIRE]. · Zbl 1365.81004
[82] D. Parker, A. Scherlis, M. Spradlin and A. Volovich, Hedgehog bases for Ancluster polylogarithms and an application to six-point amplitudes, JHEP11 (2015) 136 [arXiv:1507.01950] [INSPIRE]. · Zbl 1388.81186 · doi:10.1007/JHEP11(2015)136
[83] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP12 (2011) 066 [arXiv:1105.5606] [INSPIRE]. · Zbl 1306.81082 · doi:10.1007/JHEP12(2011)066
[84] S. Caron-Huot et al., The double pentaladder integral to all orders, JHEP07 (2018) 170 [arXiv:1806.01361] [INSPIRE]. · Zbl 1395.81276
[85] G. Papathanasiou, The Steinmann cluster bootstrap forN \[\mathcal{N} = 4\] SYM amplitudes, talk given at Amplitudes 2017, July 10-14, Edinburgh, U.K. (2017). · Zbl 1377.81197
[86] J. Drummond and Ö. Gürdoğan, private communication.
[87] T. Harrington and M. Spradlin, Cluster functions and scattering amplitudes for six and seven points, JHEP07 (2017) 016 [arXiv:1512.07910] [INSPIRE]. · Zbl 1380.81402 · doi:10.1007/JHEP07(2017)016
[88] L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys.A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE]. · Zbl 1204.81134
[89] G. Yang, Scattering amplitudes at strong coupling for 4K gluons, JHEP12 (2010) 082 [arXiv:1004.3983] [INSPIRE]. · Zbl 1294.81297 · doi:10.1007/JHEP12(2010)082
[90] J. Golden and A.J. Mcleod, Cluster algebras and the subalgebra constructibility of the seven-particle remainder function, JHEP01 (2019) 017 [arXiv:1810.12181] [INSPIRE]. · Zbl 1409.81149 · doi:10.1007/JHEP01(2019)017
[91] W. Stein and D. Joyner, SAGE: system for algebra and geometry experimentation, ACM SIGSAM Bull.39 (2005) 61, http://www.sagemath.org. · Zbl 1341.68315 · doi:10.1145/1101884.1101889
[92] V. Del Duca, C. Duhr and V.A. Smirnov, The massless hexagon integral in D = 6 dimensions, Phys. Lett.B 703 (2011) 363 [arXiv:1104.2781] [INSPIRE]. · Zbl 1298.81378
[93] L.J. Dixon, J.M. Drummond and J.M. Henn, The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N = 4 SYM, JHEP06 (2011) 100 [arXiv:1104.2787] [INSPIRE]. · Zbl 1298.81168 · doi:10.1007/JHEP06(2011)100
[94] C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP07 (2013) 003 [arXiv:1302.4379] [INSPIRE]. · doi:10.1007/JHEP07(2013)003
[95] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun.188 (2015) 148 [arXiv:1403.3385] [INSPIRE]. · Zbl 1344.81024 · doi:10.1016/j.cpc.2014.10.019
[96] R. Apéry, Irrationalité de ζ(2) et ζ(3), Astérisque61 (1979) 11. · Zbl 0401.10049
[97] S. Fischler, J. Sprang and W. Zudilin, Many odd zeta values are irrational, Comp. Math155 (2019) 938 [arXiv:1803.08905]. · Zbl 1430.11097 · doi:10.1112/S0010437X1900722X
[98] M. Deneufchâtel et al., Independence of hyperlogarithms over function fields via algebraic combinatorics, arXiv:1101.4497. · Zbl 1279.11069
[99] F. Cachazo, M. Spradlin and A. Volovich, Leading singularities of the two-loop six-particle MHV amplitude, Phys. Rev.D 78 (2008) 105022 [arXiv:0805.4832] [INSPIRE].
[100] V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in N = 4 SYM, JHEP03 (2010) 099 [arXiv:0911.5332] [INSPIRE]. · Zbl 1271.81104
[101] V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM, JHEP05 (2010) 084 [arXiv:1003.1702] [INSPIRE]. · Zbl 1287.81080
[102] I. Prlina, M. Spradlin and S. Stanojevic, All-loop singularities of scattering amplitudes in massless planar theories, Phys. Rev. Lett.121 (2018) 081601 [arXiv:1805.11617] [INSPIRE]. · Zbl 1391.81133
[103] D. Zagier, Values of zeta functions and their applications, Prog. Math120 (1994) 497. · Zbl 0822.11001
[104] C. Duhr and F. Dulat, PolyLogTools — Polylogs for the masses, arXiv:1904.07279 [INSPIRE].
[105] J. Ablinger, J. Blumlein and C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials, J. Math. Phys.52 (2011) 102301 [arXiv:1105.6063] [INSPIRE]. · Zbl 1272.81127 · doi:10.1063/1.3629472
[106] B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.111(2013) 091602 [arXiv:1303.1396] [INSPIRE]. · doi:10.1103/PhysRevLett.111.091602
[107] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
[108] B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all helicity amplitudes, JHEP08 (2015) 018 [arXiv:1412.1132] [INSPIRE]. · Zbl 1388.81277 · doi:10.1007/JHEP08(2015)018
[109] N. Arkani-Hamed, A. Hodges and J. Trnka, Positive amplitudes in the amplituhedron, JHEP08 (2015) 030 [arXiv:1412.8478] [INSPIRE]. · Zbl 1388.81166 · doi:10.1007/JHEP08(2015)030
[110] L.J. Dixon, M. von Hippel, A.J. McLeod and J. Trnka, Multi-loop positivity of the planarN \[\mathcal{N} = 4\] SYM six-point amplitude, JHEP02(2017) 112 [arXiv:1611.08325] [INSPIRE]. · Zbl 1377.81101
[111] S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP10 (2012) 026 [arXiv:1205.0801] [INSPIRE].
[112] D. Nandan, M.F. Paulos, M. Spradlin and A. Volovich, Star integrals, convolutions and simplices, JHEP05 (2013) 105 [arXiv:1301.2500] [INSPIRE]. · Zbl 1342.83412 · doi:10.1007/JHEP05(2013)105
[113] J.L. Bourjaily and J. Trnka, Local integrand representations of all two-loop amplitudes in planar SYM, JHEP08 (2015) 119 [arXiv:1505.05886] [INSPIRE]. · Zbl 1388.81710 · doi:10.1007/JHEP08(2015)119
[114] J.L. Bourjaily, E. Herrmann and J. Trnka, Prescriptive unitarity, JHEP06 (2017) 059 [arXiv:1704.05460] [INSPIRE]. · Zbl 1380.81388
[115] J.L. Bourjaily et al., Elliptic double-box integrals: massless scattering amplitudes beyond polylogarithms, Phys. Rev. Lett.120 (2018) 121603 [arXiv:1712.02785] [INSPIRE]. · doi:10.1103/PhysRevLett.120.121603
[116] J.L. Bourjaily et al., Traintracks through Calabi-Yau manifolds: scattering amplitudes beyond elliptic polylogarithms, Phys. Rev. Lett.121 (2018) 071603 [arXiv:1805.09326] [INSPIRE]. · doi:10.1103/PhysRevLett.121.071603
[117] J.L. Bourjaily, A.J. McLeod, M. von Hippel and M. Wilhelm, Bounded Collection of Feynman Integral Calabi-Yau Geometries, Phys. Rev. Lett.122 (2019) 031601 [arXiv:1810.07689] [INSPIRE]. · doi:10.1103/PhysRevLett.122.031601
[118] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
[119] J. Broedel et al., Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series, JHEP08 (2018) 014 [arXiv:1803.10256] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.