×

Conjectures and results about parabolic induction of representations of \(\mathrm{GL}_n(F)\). (English) Zbl 1471.22016

Summary: In 1980 Zelevinsky introduced certain commuting varieties whose irreducible components classify complex, irreducible representations of the general linear group over a non-archimedean local field with a given supercuspidal support. We formulate geometric conditions for certain triples of such components and conjecture that these conditions are related to irreducibility of parabolic induction. The conditions are in the spirit of the Geiss-Leclerc-Schröer condition that occurs in the conjectural characterization of \(\square\)-irreducible representations. We verify some special cases of the new conjecture and check that the geometric and representation-theoretic conditions are compatible in various ways.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] Arakawa, T.; Suzuki, T., Duality between \(\mathfrak{s}\mathfrak{l}_n({ C})\) and the degenerate affine Hecke algebra, J. Algebra, 209, 1, 288-304 (1998) · Zbl 0919.17005
[2] Aubert, A-M, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif \(p\)-adique, Trans. Am. Math. Soc., 347, 6, 2179-2189 (1995) · Zbl 0827.22005
[3] Aubert, A.-M.: Erratum: “Duality in the Grothendieck group of the category of finite-length smooth representations of a \(p\)-adic reductive group” [Trans. Amer. Math. Soc. 347(6), 1995, pp. 2179-2189; MR1285969 (95i:22025)]: Trans. Amer. Math. Soc. 348(11), 4687-4690 (1996) · Zbl 0861.22012
[4] Bernstein, IN; Zelevinsky, AV, Representations of the group \(GL(n, F),\) where \(F\) is a local non-Archimedean field, Uspehi Mat. Nauk, 31, 3-189, 5-70 (1976) · Zbl 0342.43017
[5] Bernstein, IN; Zelevinsky, AV, Induced representations of reductive \(\mathfrak{p } \)-adic groups. I, Ann. Sci. École Norm. Sup. (4), 10, 4, 441-472 (1977) · Zbl 0412.22015
[6] Bernstein, J.; Bezrukavnikov, R.; Kazhdan, D., Deligne-Lusztig duality and wonderful compactification, Selecta Math. (N.S.), 24, 1, 7-20 (2018) · Zbl 1496.20075 · doi:10.1007/s00029-018-0391-5
[7] Bernstein, J.N.: \(P\)-invariant distributions on GL \((N)\) and the classification of unitary representations of GL \((N)\) (non-Archimedean case). Lie group representations, II (College Park, Md., 1982/1983), pp. 50-102 (1984) · Zbl 0541.22009
[8] Deligne, P.: Catégories tannakiennes. The Grothendieck Festschrift, Vol. II, pp. 111-195 (1990) · Zbl 0727.14010
[9] Geiss, C.; Leclerc, B.; Schröer, J., Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4), 38, 2, 193-253 (2005) · Zbl 1131.17006 · doi:10.1016/j.ansens.2004.12.001
[10] Geiß, C.; Leclerc, B.; Schröer, J., Kac-Moody groups and cluster algebras, Adv. Math., 228, 1, 329-433 (2011) · Zbl 1232.17035 · doi:10.1016/j.aim.2011.05.011
[11] Hernandez, D.; Leclerc, B., Cluster algebras and quantum affine algebras, Duke Math. J., 154, 2, 265-341 (2010) · Zbl 1284.17010 · doi:10.1215/00127094-2010-040
[12] Hernandez, D.; Leclerc, B., Monoidal categorifications of cluster algebras of type \(A\) and \(D\), In: Symmetries, Integrable Systems and Representations, 175-193 (2013), London: Springer, London · Zbl 1317.13052
[13] Jantzen, C., Jacquet modules of \(p\)-adic general linear groups, Represent. Theory, 11, 45-83 (2007) · Zbl 1139.22014
[14] Kang, S-J; Kashiwara, M.; Kim, M.; Oh, S., Simplicity of heads and socles of tensor products, Compos. Math., 151, 2, 377-396 (2015) · Zbl 1366.17014 · doi:10.1112/S0010437X14007799
[15] Kang, S-J; Kashiwara, M.; Kim, M.; Oh, S., Monoidal categorification of cluster algebras, J. Am. Math. Soc., 31, 2, 349-426 (2018) · Zbl 1460.13039 · doi:10.1090/jams/895
[16] Knight, H.; Zelevinsky, A., Representations of quivers of type \(A\) and the multisegment duality, Adv. Math., 117, 2, 273-293 (1996) · Zbl 0915.16009
[17] Lapid, E.: Explicit decomposition of certain induced representations of the general linear group (2019). arXiv:1911.04270
[18] Lapid, E.; Mínguez, A., On a determinantal formula of Tadić, Am. J. Math., 136, 1, 111-142 (2014) · Zbl 1288.22013 · doi:10.1353/ajm.2014.0006
[19] Lapid, E.; Mínguez, A., On parabolic induction on inner forms of the general linear group over a non-archimedean local field, Selecta Math. (N.S.), 22, 4, 2347-2400 (2016) · Zbl 1355.22005 · doi:10.1007/s00029-016-0281-7
[20] Lapid, E.; Mínguez, A., Geometric conditions for \(\square \)-irreducibility of certain representations of the general linear group over a non-archimedean local field, Adv. Math., 339, 113-190 (2018) · Zbl 1400.20047
[21] Lapid, EM; Mao, Z., Local Rankin-Selberg integrals for Speh representations, Compos. Math., 156, 5, 908-945 (2020) · Zbl 1465.22004 · doi:10.1112/S0010437X2000706X
[22] Leclerc, B., Imaginary vectors in the dual canonical basis of \(U_q(\mathfrak{n})\), Transform. Groups, 8, 1, 95-104 (2003) · Zbl 1044.17009
[23] Mínguez, A., Sur l’irréductibilité d’une induite parabolique, J. Reine Angew. Math., 629, 107-131 (2009) · Zbl 1172.22008
[24] Mœglin, C.; Waldspurger, J-L, Sur l’involution de Zelevinski, J. Reine Angew. Math., 372, 136-177 (1986) · Zbl 0594.22008
[25] Pjaseckiĭ, VS, Linear Lie groups that act with a finite number of orbits, Funkcional. Anal. i Priložen., 9, 4, 85-86 (1975)
[26] Schneider, P.; Stuhler, U., Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math., 85, 97-191 (1997) · Zbl 0892.22012 · doi:10.1007/BF02699536
[27] Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4), 19, 3, 335-382 (1986) · Zbl 0614.22005 · doi:10.24033/asens.1510
[28] Waldspurger, J-L, La formule de Plancherel pour les groupes \(p\)-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu, 2, 2, 235-333 (2003) · Zbl 1029.22016
[29] Zelevinsky, AV, The \(p\)-adic analogue of the Kazhdan-Lusztig conjecture, Funktsional. Anal. i Prilozhen., 15, 2, 9-21 (1981) · Zbl 0463.22013
[30] Zelevinsky, AV, Two remarks on graded nilpotent classes, Uspekhi Mat. Nauk, 40, 1-241, 199-200 (1985) · Zbl 0577.20032
[31] Zelevinsky, AV, Induced representations of reductive \({\mathfrak{p}} \)-adic groups. II. On irreducible representations of \({\rm GL}(n)\), Ann. Sci. École Norm. Sup. (4), 13, 2, 165-210 (1980) · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.