×

Log canonical thresholds and Monge-Ampère masses. (English) Zbl 1441.14017

The log canonical threshold \(c(\varphi)\) of a plurisubharmonic function \(\varphi\) on an open subset of \(\mathbb C^n\) is the supremum over all positive \(c\) such that \(e^{-2c\varphi}\) is \(L^1\) on a neighbourhood of \(0\in\mathbb C^n\). Let \(\Omega\) be a bounded hyperconvex domain. For \(\varphi\in\mathcal{E}(\Omega)\), the largest subset of the space of negative plurisubharmonic functions on which the Monge-Ampère operator is well-defined, a lower bound is given for \(c(\varphi)\) in terms of the log canonical threshold \(c_{n-1}(\varphi)\) of the restriction of \(\varphi\) to \((n-1)\)-dimensional subspaces through the origin and the Lelong number \(e_{n}(\varphi)\) of \((dd^c\varphi)^n\) at \(0\). Together with the restriction formula of Q. Guan and X. Zhou [“Multiplier ideal sheaves, jumping numbers, and the restriction formula”, Preprint, arXiv:1504.04209] this gives the upper bound \(c(\varphi)\leq \frac n{n-1}c_{n-1}(\varphi)\).

MSC:

14B05 Singularities in algebraic geometry
32U05 Plurisubharmonic functions and generalizations
32U25 Lelong numbers
32S10 Invariants of analytic local rings

References:

[1] Åhag, P., Cegrell, U., Czyz, R., Pham, H.H.: Monge-Ampère measures on pluripolar sets. J. Math. Pures Appl. 92, 613-627 (2009) · Zbl 1186.32012 · doi:10.1016/j.matpur.2009.06.001
[2] Åhag, P., Cegrell, U., Kołodziej, S., Pham, H.H., Zeriahi, A.: Partial pluricomplex energy and integrability exponents of plurisubharmonic functions. Adv. Math. 222, 2036-2058 (2009) · Zbl 1180.31011 · doi:10.1016/j.aim.2009.07.002
[3] Berndtsson, B.: The openness conjecture and complex Brunn-Minkowski inequalities. Comp. Geom. Dyn. 10, 29-44 (2015) · Zbl 1337.32001 · doi:10.1007/978-3-319-20337-9_2
[4] Blocki, Z.: The domain of definition of the complex Monge-Ampère operator. Am. J. Math. 128, 519-530 (2006) · Zbl 1102.32018 · doi:10.1353/ajm.2006.0010
[5] Blocki, Z.: Suita conjecture and the Ohsawa-Takegoshi extension theorem. Invent. Math. 193, 149-158 (2013) · Zbl 1282.32014 · doi:10.1007/s00222-012-0423-2
[6] Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 1-44 (1976) · Zbl 0315.31007 · doi:10.1007/BF01418826
[7] Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1-41 (1982) · Zbl 0547.32012 · doi:10.1007/BF02392348
[8] Cegrell, U.: Pluricomplex energy. Acta Math. 180, 187-217 (1998) · Zbl 0926.32042 · doi:10.1007/BF02392899
[9] Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier 54, 159-179 (2004) · Zbl 1065.32020 · doi:10.5802/aif.2014
[10] Corti, A.: Factoring birational maps of threefolds after Sarkisov. J. Alg. Geom. 4, 223-254 (1995) · Zbl 0866.14007
[11] Corti, A.: Singularities of linear systems and \[33\]-fold birational geometry. Explic. Bir. Geom. 281, 259-312 (2000) · Zbl 0960.14017
[12] Demailly, J.-P.: Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticité. Acta Math. 159, 153-169 (1987) · Zbl 0629.32011 · doi:10.1007/BF02392558
[13] Demailly, J.-P.: Regularization of closed positive currents and Intersection Theory. J. Alg. Geom. 1, 361-409 (1992) · Zbl 0777.32016
[14] Demailly, J.-P.: Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Series in Math., edited by V. Ancona and A. Silva, Plenum Press, New-York, (1993) · Zbl 0792.32006
[15] Demailly, J.-P.: Estimates on Monge-Ampère operators derived from a local algebra inequality, in: Complex Analysis and Digital geometry, Proceedings of the Kiselmanfest 2006, Acta Universitatis Upsaliensis, (2009) · Zbl 0979.13026
[16] Demailly, J.-P.: Extension of holomorphic functions defined on non reduced analytic subvarieties, arXiv:1510.05230 [math.CV] (2015) · Zbl 1282.32014
[17] Demailly, J.-P., Pham, H.H.: A sharp lower bound for the log canonical threshold. Acta Math. 212, 1-9 (2014) · Zbl 1298.14006 · doi:10.1007/s11511-014-0107-4
[18] Demailly, J.-P., Kollár, J.: Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. Ecol. Norm. Sup. 34(4), 525-556 (2001) · Zbl 0994.32021 · doi:10.1016/S0012-9593(01)01069-2
[19] de Fernex, T., Ein, T., Mustaţǎ, M.: Bounds for log canonical thresholds with applications to birational rigidity. Math. Res. Lett. 10, 219-236 (2003) · Zbl 1067.14013 · doi:10.4310/MRL.2003.v10.n2.a9
[20] de Fernex, T., Ein, L., Mustaţǎ, M.: Multiplicities and log canonical thresholds. J. Alg. Geom. 13, 603-615 (2004) · Zbl 1068.14006 · doi:10.1090/S1056-3911-04-00346-7
[21] Guan, Q., Zhou, X.: A proof of Demailly’s strong openness conjecture. Ann. Math. 182, 605-616 (2015) · Zbl 1329.32016 · doi:10.4007/annals.2015.182.2.5
[22] Guan, Q., Zhou, X.: Effectiveness of Demailly’s strong openness conjecture and related problems. Invent. Math. 202, 635-676 (2015) · Zbl 1333.32014 · doi:10.1007/s00222-014-0575-3
[23] Guan, Q., Zhou, X.: Multiplier ideal sheaves, jumping numbers, and the restriction formula, arXiv:1504.04209 [math.CV] (2015) · Zbl 0629.32011
[24] Howald, J.: Multiplier ideals of monomial ideals. Trans. Am. Math. Soc. 353, 2665-2671 (2001) · Zbl 0979.13026 · doi:10.1090/S0002-9947-01-02720-9
[25] Kim, D.: Themes on Non-analytic Singularities of Plurisubharmonic Functions, Volume 144 of the series Springer Proceedings in Mathematics and Statistics, 197-206 (2015) · Zbl 1325.32034
[26] Kiselman, C.O.: Un nombre de Lelong raffiné, Séminaire d’Analyse Complexe et Géométrie 1985-87, Fac. Sci. Tunis & Fac. Sci. Tech. Monastir, 61-70 (1987) · Zbl 1296.32013
[27] Kiselman, C.O.: Attenuating the singularities of plurisubharmonic functions. Ann. Polon. Math. 60, 173-197 (1994) · Zbl 0827.32016 · doi:10.4064/ap-60-2-173-197
[28] Matsumura, S.: A Nadel vanishing theorem for metrics with minimal singularities on big line bundles. Adv. Math. 280, 188-207 (2015) · Zbl 1345.14025 · doi:10.1016/j.aim.2015.03.019
[29] Ohsawa, T., Takegoshi, K.: On the extension of \[L^2\] L2 holomorphic functions. Math. Zeit. 195, 197-204 (1987) · Zbl 0625.32011 · doi:10.1007/BF01166457
[30] Pham, H.H.: The weighted log canonical threshold. C. R. Math. 352, 283-288 (2014) · Zbl 1296.32013 · doi:10.1016/j.crma.2014.02.010
[31] Rashkovskii, A.: Extremal cases for the log canonical threshold. C. R. Math. 353, 21-24 (2014) · Zbl 1310.32037 · doi:10.1016/j.crma.2014.11.002
[32] Skoda, H.: Sous-ensembles analytiques d’ordre fini ou infini dans \[{\mathbb{C}}^nCn\]. Bull. Soc. Math. Fr. 100, 353-408 (1972) · Zbl 0246.32009 · doi:10.24033/bsmf.1743
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.