×

Effectiveness of Demailly’s strong openness conjecture and related problems. (English) Zbl 1333.32014

The aim of this paper is to prove effectiveness results concerning the strong openness conjecture, the lower semicontinuity of plurisubharmonic functions with multiplier and conjectures of Demailly-Kollár and Jonsson-Mustată.
The Strong openness conjecture posed by J.-P. Demailly [Analytic methods in algebraic geometry. Surveys of Modern Mathematics 1. Somerville, MA: International Press; Beijing: Higher Education Press (2012; Zbl 1271.14001)] is the following: Let \(\varphi\) be a plurisubharmonic function on a complex manifold \(X\), then \[ \mathcal I(\varphi)=\mathcal I_{+}(\varphi):=\bigcup_{\epsilon >0}\mathcal I((1+\epsilon)\varphi), \] where \(\mathcal I(\varphi)\) is the sheaf of germs of holomorphic functions \(f\) such that \(|f|^2e^{-\varphi}\) is locally integrable.
If \(\mathcal I(\varphi)=\mathcal O_X\), then the strong openness conjecture degenerates to the openness conjecture posed by J.-P. Demailly and J. Kollár [Ann. Sci. Éc. Norm. Supér. (4) 34, No. 4, 525–556 (2001; Zbl 0994.32021)].
Let \(D\) be a pseudoconvex domain in \(\mathbb C^n\), \(z_0\in D\). Let \(\varphi\) be a negative plurisubharmonic function on \(D\), and let \(F\) be a holomorphic function on \(D\). Let \[ ||f||_{\varphi}:=\left (\int_D|F|^2e^{-\varphi }d\lambda_n\right)^{\frac 12}, \] where \(\lambda_n\) is the Lebesgue measure in \(\mathbb C^n\), and define the generalized Bergmann kernel as follows
\[ K_{\varphi,F}(z_0):=\left(\inf\Big\{||G||^2_0: G\in \mathcal O(D), (G-F,z_0)\in \mathcal I_{+}(2c_{z_0}^F(\varphi)\varphi)_{z_0} \Big\}\right)^{-1}, \] where
\[ c^F_{z_0}(\varphi):=\sup\big\{c\geq 0: |F|^2e^{-2c\varphi} \text{ is integrable on a neighborhood of } z_0\big\} \]
is the jumping number. Define also the following function \(\theta :(1,\infty)\to \mathbb R\):
\[ \theta(t)=\left (\frac {1}{(t-1)(2t-1)}\right)^{\frac 1t}. \]
The authors establish the following effectiveness of the strong openness conjecture. Let a holomorphic function \(F\) and a negative plurisubharmonic function \(\varphi\) be such that \(||F||_{\varphi}^2\leq C_1\) and \(K_{\varphi,F}^{-1}\geq C_2\), where \(C_1, C_2\) are two positive constants. Then, for any \(p>1\) satisfying \(\theta(p)>\frac {C_1}{C_2}\), one has \((F,z_0)\in \mathcal I(p\varphi)_{z_0}\).
The above result gives a new proof of the strong openness conjecture and gives (for \(F=1\)) a more precise version of the effectiveness result for the openness conjecture of B. Berndtsson [“The openness conjecture for plurisubharmonic functions”, Preprint, arXiv:1305.5781].
A lower semicontinuity property of plurisubharmonic functions with multiplier.
Demailly and Kollár conjectured in [loc. cit.] that, if \(X\) is a complex manifold, \(K\) a compact set and \(L\) an open set such that \(K\subset L\subset X\), then, for every nonzero function \(f\in \mathcal O(X)\), there exists a constant \(\delta=\delta(f,K,L)\) such that, for any \(g\in \mathcal O(X)\),
\[ \sup_L|g-f|<\delta \Rightarrow c_K(\log|g|)\geq c_K(\log |f|), \]
where
\[ c_K(\varphi)=\sup\big\{c\geq 0: e^{-2c\varphi} \text{ is integrable on a neighborhood of } K\big\}. \]
Using the idea from their paper [“Strong openness conjecture and related problems for plurisubharmonic functions”, Preprint, arXiv:1401.7158], the authors prove the following lower semicontinuity property of plurisubharmonic functions with a multiplier. Let \(\{\phi_m\}_{m=1}^{\infty}\) be a sequence of negative plurisubharmonic functions on the polidisc \(\Delta^n\), which is convergent to a negative Lebesgue measurable function \(\phi\) on \(\Delta^n\), in Lebesgue measure. Let \(\{F_m\}_{m=1}^{\infty}\) be a sequence of holomorphic functions on \(\Delta^n\) with uniform bound, which is convergent to a Lebesgue measurable function \(F\) on \(\Delta^n\), in Lebesgue measure. If, for any neighborhood U of \(0\), the pairs \((F_m,\phi_m)\) satisfy \(\inf_{m}K^{-1}_{\phi_m,F_m}(0)>0\), then \(|f|^2e^{-\phi}\) is not integrable near \(0\). In particular, if \(\phi\) is plurisubharmonic and \(F\) is holomorphic, then \((F,0)\notin \mathcal I(\phi)_0\).
Demailly and Kollár posed in [loc. cit.] the following conjecture: Let \(\varphi\) be a plurisubharmonic function on \(\Delta^n\), and let \(K\) be a compact subset of \(\Delta^n\). If \(c_K(\varphi)<\infty\), then \[ \frac{\lambda_n(\{\varphi<\log r\})}{r^{2c_K(\varphi)}} \tag{*} \] has a uniform positive lower bound independent of \(r\in (0,1)\) small enough.
Using the idea from [loc. cit.], the authors prove the following effectiveness of the positive lower bound of (*). Let \(B_0\in (0,1]\), let \(\varphi\) be a negative plurisubharmonic function on a pseudoconvex domain \(D\subset \mathbb C^n\), and let \(F\in \mathcal O(D)\). If \(|F|^2e^{-\varphi}\) is not locally integrable near \(z_0\in D\), then \[ \liminf_{R\to \infty}\frac 1{B_0}\int_D\mathbb I_{\{-(R+B_0)<\varphi<-R\}}|F|^2e^{t_0+B_0}d\lambda_n\geq K^{-1}_{\varphi,F}(z_0). \] In particular if \(F=1\), then \[ \liminf_{R\to \infty}e^{R+B_0}\frac {\lambda_n(\{-(R+B_0)<\varphi<-R\})}{B_0}\geq K^{-1}_{\varphi,1}(z_0)\geq K^{-1}(z_0). \]
M. Jonsson and M. Mustată [J. Inst. Math. Jussieu 13, No. 1, 119–144 (2014; Zbl 1314.32047)] posed the following conjecture: Let \(\psi\) be a plurisubharmonic function on \(\Delta^n\), and let \(I\) be an ideal of \(\mathcal O_{\Delta^n,0}\), generated by \(\{f_j\}_{j=1}^l\). If \(c_0^I(\psi)<\infty\), then \[ \frac {\lambda_n(\{c_0^I(\psi)\psi-\log |I|<\log r\})}{r^2} \tag{**} \] has a uniform positive lower bound independent of \(r\in (0,1)\) small enough, where \(\log |I|=\log (\max _{1\leq j\leq l}|f_j|)\) and \[ c^I_{z_0}(\varphi):=\sup\big\{c\geq 0: |I|^2e^{-2c\varphi} \text{ is integrable on a neighborhood of } 0\big\} \]
is the jumping number.
Using the idea from [loc. cit.], the authors prove the following effectiveness of the positive lower bound of (**). Let \(\delta \in \mathbb N\), let \(\psi\) be a plurisubharmonic function on a pseudoconvex domain \(D\subset \mathbb C^n\) bounded from above, and let \(F\in \mathcal O(D)\). If \(|F|^2e^{-\psi}\) is not locally integrable near \(z_0\in D\), then
\[ \liminf_{R\to \infty} \frac {e^R}{B_0}\lambda_n\Big(\big\{-R-B_0<\psi-\log|F|^2<-R\big\}\Big)\geq \frac {K^{-1}_{\psi+\delta\max (\psi, 2\log |F|), F^{1+\delta}}(z_0)}{(1+\frac 1{\delta})e^{B_0}\sup_De^{(1+\delta)\max(\psi,2\log |F|)}}. \]

MSC:

32D15 Continuation of analytic objects in several complex variables
32E10 Stein spaces
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
32U05 Plurisubharmonic functions and generalizations
32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators

References:

[1] Berndtsson, B.: The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman. Ann. L’Inst. Fourier (Grenoble) 46(4), 1083-1094 (1996) · Zbl 0853.32024 · doi:10.5802/aif.1541
[2] Berndtsson, B: The openness conjecture for plurisubharmonic functions. arXiv:1305.5781 · Zbl 1337.32001
[3] Boucksom, S., Favre, C., Jonsson, M.: Valuations and plurisubharmonic singularities. Publ. Res. Inst. Math. Sci. 44(2), 449-494 (2008) · Zbl 1146.32017 · doi:10.2977/prims/1210167334
[4] Cao, J.Y.: Numerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds. arXiv:1210.5692 · Zbl 1323.32012
[5] Demailly, J.-P.: Fonction de Green pluricomplexe et mesures pluriharmoniques. (French) [Pluricomplex Green functions and pluriharmonic measures] Séminaire de Théorie Spectrale et Géométrie, No. 4, Année 1985-1986, 131-143, Univ. Grenoble I, Saint-Martin-d’Hères, 1986 · Zbl 0994.32021
[6] Demailly, J.-P.: Multiplier ideal sheaves and analytic methods in algebraic geometry. School on vanishing theorems and effective results in algebraic geometry (Trieste, 2000), 1-148, ICTP Lect. Notes, 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2001) · Zbl 1102.14300
[7] Demailly, J.-P.: Analytic methods in algebraic geometry. Higher Education Press, Beijing (2010)
[8] Demailly, J.-P.: Complex analytic and differential geometry. http://www-fourier.ujf-grenoble.fr/demailly/books.html · Zbl 1272.32011
[9] Demailly, J.-P., Ein, L., Lazarsfeld, R.: A subadditivity property of multiplier ideals. Michigan Math. J. 48, 137-156 (2000) · Zbl 1077.14516 · doi:10.1307/mmj/1030132712
[10] Demailly, J.-P., Kollár, J.: Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. 34(4), 525-556 (2001) · Zbl 0994.32021
[11] Demailly, J.-P., Peternell, T.: A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds. J. Differ. Geom. 63(2), 231-277 (2003) · Zbl 1077.32504
[12] de Fernex, T., Ein, L., Mustaţă, M.: Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties. Duke Math. J. 152(1), 93-114 (2010) · Zbl 1189.14044
[13] Favre, C., Jonsson, M.: Valuative analysis of planar plurisubharmonic functions. Invent. Math. 162(2), 271-311 (2005) · Zbl 1089.32032 · doi:10.1007/s00222-005-0443-2
[14] Favre, C., Jonsson, M.: Valuations and multiplier ideals. J. Am. Math. Soc. 18(3), 655-684 (2005) · Zbl 1075.14001 · doi:10.1090/S0894-0347-05-00481-9
[15] Guan, Q.A., Zhou, X.Y.: Optimal constant problem in the \[L^2\] L2 extension theorem. C. R. Acad. Sci. Paris. Ser. I. 350(15-16), 753-756 (2012) · Zbl 1256.32009 · doi:10.1016/j.crma.2012.08.007
[16] Guan, Q.A., Zhou, X.Y.: Generalized \[L^2\] L2 extension theorem and a conjecture of Ohsawa. C. R. Acad. Sci. Paris. Ser. I. 351(3-4), 111-114 (2013) · Zbl 1272.32011 · doi:10.1016/j.crma.2013.01.012
[17] Guan, Q.A., Zhou, X.Y.: Optimal constant in an \[L^2\] L2 extension problem and a proof of a conjecture of Ohsawa. Sci. China. Math., pp. 1-25 (2014) · Zbl 1077.14516
[18] Guan, Q.A., Zhou, X.Y.: An \[L^2\] L2 extension theorem with optimal estimate. C. R. Acad. Sci. Paris. Ser. I. (2), 137-141 (2014) · Zbl 1288.32015
[19] Guan, Q.A., Zhou, X.Y.: A solution of an \[L^2\] L2 extension problem with optimal estimate and applications. arXiv:1310.7169. Published online, Ann. of math. · Zbl 1348.32008
[20] Guan, Q.A., Zhou, X.Y.: Strong openness conjecture for plurisubharmonic functions. arXiv:1311.3781 · Zbl 1077.32504
[21] Guan, Q.A., Zhou, X.Y.: Strong openness conjecture and related problems for plurisubharmonic functions. arXiv:1401.7158 · Zbl 1256.32009
[22] Guan, Q.A., Zhou, X.Y., Zhu, L.F.: On the Ohsawa-Takegoshi \[L^2\] L2 extension theorem and the twisted Bochner-Kodaira identity. C. R. Acad. Sci. Paris. Ser. I. 349(13-14), 797-800 (2011) · Zbl 1227.32014 · doi:10.1016/j.crma.2011.06.001
[23] Guenancia, H.: Toric plurisubharmonic functions and analytic adjoint ideal sheaves. Math. Z. 271(3-4), 1011-1035 (2012) · Zbl 1255.32014 · doi:10.1007/s00209-011-0900-0
[24] Hacon, C., McKernan, J., Xu, C.: ACC for log canonical thresholds. Ann. Math. 180(2), 523-571 (2014) · Zbl 1320.14023
[25] Jonsson, M., Mustată, M.: Valuations and asymptotic invariants for sequences of ideals. Ann. l’Inst. Fourier A. 62(6), 2145-2209 (2012) · Zbl 1272.14016 · doi:10.5802/aif.2746
[26] Jonsson, M., Mustată M.: An algebraic approach to the openness conjecture of Demailly and Kollár, J. Inst. Math. Jussieu pp. 1-26 (2013) · Zbl 1314.32047
[27] Kim, D.: The exactness of a general Skoda complex. Michigan Math. J. 63(1), 3-18 (2014) · Zbl 1297.13015
[28] Kollár J. (with 14 coauthors): Flips and abundance for algebraic threefolds. Astérisque, vol. 211 (1992) · Zbl 0782.00075
[29] Lazarsfeld, R.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series; II. Positivity for vector bundles, and multiplier ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A series of modern surveys in mathematics, 48, 49. Springer, Berlin (2004) · Zbl 1066.14021
[30] Lehmann, B.: Algebraic bounds on analytic multiplier ideals. arXiv:1109.4452v3 [math.AG] · Zbl 1386.14043
[31] Matsumura, S.: A Nadel vanishing theorem for metrics with minimal singularities on big line bundles. arXiv:1306.2497 · Zbl 1345.14025
[32] Matsumura, S.: An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities. Math. Ann. 359, 785-802 (2014). doi:10.1007/s00208-014-1018-6 · Zbl 1327.14092
[33] Nadel, A.: Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature. Ann. Math. (2) 132(3), 549-596 (1990) · Zbl 0731.53063
[34] Ohsawa, T.: On the extension of \[L^2\] L2 holomorphic functions. III. Negligible weights. Math. Z. 219(2), 215-225 (1995) · Zbl 0823.32006 · doi:10.1007/BF02572360
[35] Ohsawa, T.: On the extension of \[L^2\] L2 holomorphic functions. V. Effects of generalization. Nagoya Math. J. 161 (2001), 1-21. Erratum to: “On the extension of <InlineEquation ID=”IEq834“> <EquationSource Format=”TEX“>\[L^2\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> L2 holomorphic functions. V. Effects of generalization” [Nagoya Math. J. 161, : 1-21]. Nagoya Math. J. 163, pp. 229 (2001) · Zbl 0986.32002
[36] Shokurov, V.: 3-Fold log flips. Izv. Russ. Acad. Nauk Ser. Mat. 56, 105-203 (1992)
[37] Sibony, N.: Quelques problèmes de prolongement de courants en analyse complexe. (French) [Some extension problems for currents in complex analysis]. Duke Math. J. 52(1), 157-197 (1985) · Zbl 0578.32023
[38] Siu, Y.T.: Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53-156 (1974) · Zbl 0289.32003 · doi:10.1007/BF01389965
[39] Siu, Y.T.: The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi. Geom. Complex Anal. Hayama. World Scientific. pp. 577-592 (1996) · Zbl 0941.32021
[40] Siu, Y.T.: Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type. Complex Geom. (Göttingen, 2000), Springer, Berlin, pp. 223-277 (2000) · Zbl 1007.32010
[41] Siu, Y.T.: Multiplier ideal sheaves in complex and algebraic geometry. Sci. China Ser. A. 48(suppl.), 1-31 (2005) · Zbl 1131.32010
[42] Siu, Y.T.: Dynamic multiplier ideal sheaves and the construction of rational curves in Fano manifolds. Complex analysis and digital geometry, 323-360, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 86, Uppsala Universitet, Uppsala, 2009 · Zbl 1201.14013
[43] Straube, E.: Lectures on the \[L^2\] L2-Sobolev Theory of the \[\bar{\partial } \]∂¯-Neumann Problem. European Mathematical Society, ESI Lectures in Mathematics and Physics. Zrich (2010) · Zbl 1247.32003
[44] Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds with \[C_1M>0\] C1M>0. Invent. Math. 89(2), 225-246 (1987) · Zbl 0599.53046
[45] Yi, L.: An Ohsawa-Takegoshi theorem on compact Kähler manifolds. Sci. China Math. 57(1), 9-30 (2014) · Zbl 1302.32035 · doi:10.1007/s11425-013-4656-3
[46] Zhu, L.F., Guan, Q.A., Zhou, X.Y.: On the Ohsawa-Takegoshi \[L^2\] L2 extension theorem and the Bochner-Kodaira identity with non-smooth twist factor. J. Math. Pures Appl. (9) 97(6), 579-601 (2012) · Zbl 1244.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.