×

Solving the discretised multiphase flow equations with interface capturing on structured grids using machine learning libraries. (English) Zbl 1539.76006

Summary: This paper solves the discretised multiphase flow equations using tools and methods from machine-learning libraries. The idea comes from the observation that convolutional layers can be used to express a discretisation as a neural network whose weights are determined by the numerical method, rather than by training, and hence, we refer to this approach as Neural Networks for PDEs (NN4PDEs). To solve the discretised multiphase flow equations, a multigrid solver is implemented through a convolutional neural network with a U-Net architecture. Immiscible two-phase flow is modelled by the 3D incompressible Navier-Stokes equations with surface tension and advection of a volume fraction field, which describes the interface between the fluids. A new compressive algebraic volume-of-fluids method is introduced, based on a residual formulation using Petrov-Galerkin for accuracy and designed with NN4PDEs in mind. High-order finite-element based schemes are chosen to model a collapsing water column and a rising bubble. Results compare well with experimental data and other numerical results from the literature, demonstrating that, for the first time, finite element discretisations of multiphase flows can be solved using an approach based on (untrained) convolutional neural networks. A benefit of expressing numerical discretisations as neural networks is that the code can run, without modification, on CPUs, GPUs or the latest accelerators designed especially to run AI codes.

MSC:

76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics

References:

[1] Dauxois, T.; Peacock, T.; Bauer, P.; Caulfield, C. P.; Cenedese, C.; Gorlé, C.; Haller, G.; Ivey, G. N.; Linden, P. F.; Meiburg, E.; Pinardi, N.; Vriend, N. M.; Woods, A. W., Confronting grand challenges in environmental fluid mechanics, Phys. Rev. Fluids, 6, Article 020501 pp., 2021
[2] Hewitt, G. F., Multiphase flow in the energy industries, J. Eng. Thermophys., 17, 1, 12-23, 2008, URL: https://link.springer.com/article/10.1007/s11823-008-1002-4
[3] Wilson, I. D.; Chew, Y. M.J., Fluid mechanics in food engineering, Curr. Opin. Food Sci., 51, Article 101038 pp., 2023
[4] Woodward, H.; Schroeder, A. K.; Le Cornec, C. M.A.; Stettler, M. E.J.; ApSimon, H.; Robins, A.; Pain, C.; Linden, P. F., High resolution modelling of traffic emissions using the large eddy simulation code fluidity, Atmosphere, 13, 8, 2022
[5] Xiang, J.; Chen, B.; Latham, J.-P.; Pain, C. C., Numerical simulation of rock erosion performance of a high-speed water jet using an immersed-body method, Int. J. Rock Mech. Min. Sci., 158, Article 105179 pp., 2022
[6] Venkateshwaran, A.; Kumar, M.; Kumar, M. B.S.; Jebaseelan, J. D.D.; Ramasami, S.; Joshi, A.; Pain, C. C., Numerical study of the effect of geometry on the behaviour of internally heated melt pools for in-vessel melt retention, Prog. Nucl. Energy, 156, Article 104555 pp., 2023
[7] Woodward, H.; Schroeder, A.; de Nazelle, A.; Pain, C. C.; Stettler, M. E.J.; ApSimon, H.; Robins, A.; Linden, P. F., Do we need high temporal resolution modelling of exposure in urban areas? A test case, Sci. Total Environ., 885, Article 163711 pp., 2023
[8] Grabowski, W. W.; Wang, L.-P., Growth of cloud droplets in a turbulent environment, Annu. Rev. Fluid Mech., 45, 1, 293-324, 2013 · Zbl 1359.76293
[9] Ramirez, E.; Finney, C. E.A.; Pannala, S.; Daw, C. S.; Halow, J.; Xiong, Q., Computational study of the bubbling-to-slugging transition in a laboratory-scale fluidized bed, Chem. Eng. J., 308, 544-556, 2017
[10] Osundare, O. S.; Elliott, A.; Falcone, G.; Lao, L., Gas-liquid flow regime maps for horizontal pipelines: Predicting flow regimes using dimensionless parameter groups, Multiph. Sci. Technol., 34, 4, 75-99, 2022
[11] Khan, M. I.H.; Joardder, M. U.H.; Kumar, C.; Karim, M. A., Multiphase porous media modelling: A novel approach to predicting food processing performance, Crit. Rev. Food Sci. Nutr., 58, 4, 528-546, 2018
[12] Ling, Y.; Fuster, D.; Tryggvason, G.; Zaleski, S., A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability, J. Fluid Mech., 859, 268-307, 2018 · Zbl 1415.76648
[13] Tryggvason, G.; Sussman, M.; Hussaini, M. Y., Immersed boundary methods for fluid interfaces, (Prosperetti, A.; Tryggvason, G., Computational Methods for Multiphase Flow, 2007, Cambridge University Press), 37-77
[14] Reddy, R.; Banerjee, R., GPU accelerated VOF based multiphase flow solver and its application to sprays, Comput. & Fluids, 117, 287-303, 2015 · Zbl 1390.76877
[15] Mirjalili, S.; Jain, S. S.; Dodd, M. S., Interface-capturing methods for two-phase flows: an overview and recent developments, (Insights into Imaging Center for Turbulence Research: Annual Research Briefs, 2017), 117-135, URL: https://ctr.stanford.edu/publications/annual-research-briefs/annual-research-briefs-2017
[16] ten Eikelder, M. F.P.; Akkerman, I., A novel diffuse-interface model and a fully-discrete maximum-principle-preserving energy-stable method for two-phase flow with surface tension and non-matching densities, Comput. Methods Appl. Mech. Engrg., 379, Article 113751 pp., 2021 · Zbl 1506.76180
[17] Crialesi-Esposito, M.; Scapin, N.; Demou, A. D.; Rosti, M. E.; Costa, P.; Spiga, F.; Brandt, L., FluTAS: A GPU-accelerated finite difference code for multiphase flows, Comput. Phys. Comm., 284, Article 108602 pp., 2023 · Zbl 07700418
[18] Shin, S.; Chergui, J.; Juric, D., A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows, J. Mech. Sci. Technol., 31, 1739-1751, 2017
[19] Shin, S.; Chergui, J.; Juric, D.; Kahouadji, L.; Matar, O. K.; Craster, R. V., A hybrid interface tracking — level set technique for multiphase flow with soluble surfactant, J. Comput. Phys., 359, 409-435, 2018 · Zbl 1383.76069
[20] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J. Comput. Phys., 141, 2, 112-152, 1998 · Zbl 0933.76069
[21] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., 31, 1, 567-603, 1999
[22] Chessa, J.; Belytschko, T., An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension, Internat. J. Numer. Methods Engrg., 58, 13, 2041-2064, 2003 · Zbl 1032.76591
[23] Claus, S.; Kerfriden, P., A CutFEM method for two-phase flow problems, Comput. Methods Appl. Mech. Engrg., 348, 185-206, 2019 · Zbl 1440.76054
[24] Xie, Z.; Stoesser, T.; Yan, S.; Ma, Q.; Lin, P., A Cartesian cut-cell based multiphase flow model for large-eddy simulation of three-dimensional wave-structure interaction, Comput. & Fluids, 213, Article 104747 pp., 2020 · Zbl 1521.76263
[25] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 1, 139-165, 1998 · Zbl 1398.76051
[26] Montazeri, H.; Zandavi, S. H.; Bazylak, A., Sharp interface models for two-phase flows: Insights towards new approaches, Comput. Methods Appl. Mech. Engrg., 322, 238-261, 2017 · Zbl 1439.76020
[27] Via-Estrem, L.; Salinas, P.; Xie, Z.; Xiang, J.; Latham, J.-P.; Douglas, S.; Nistor, I.; Pain, C. C., Robust control volume finite element methods for numerical wave tanks using extreme adaptive anisotropic meshes, Internat. J. Numer. Methods Fluids, 92, 12, 1707-1722, 2020
[28] Nochetto, R. H.; Salgado, A. J.; Tomas, I., A diffuse interface model for two-phase ferrofluid flows, Comput. Methods Appl. Mech. Engrg., 309, 497-531, 2016 · Zbl 1439.76088
[29] (Prosperetti, A.; Tryggvason, G., Computational Methods for Multiphase Flow, 2007, Cambridge University Press) · Zbl 1166.76003
[30] Elgeti, S.; Sauerland, H., Deforming fluid domains within the finite element method: Five mesh-based tracking methods in comparison, Arch. Comput. Methods Eng., 23, 323-361, 2016 · Zbl 1348.76099
[31] Tryggvason, G.; Scardovelli, R.; Zaleski, S., Direct Numerical Simulations of Gas-Liquid Multiphase Flows, 2011, Cambridge University Press · Zbl 1226.76001
[32] Pavlidis, D.; Xie, Z.; Percival, J. R.; Gomes, J. L.M. A.; Pain, C. C.; Matar, O. K., Two- and three-phase horizontal slug flow simulations using an interface-capturing compositional approach, Int. J. Multiph. Flow, 67, 85-91, 2014
[33] Pavlidis, D.; Gomes, J. L.M. A.; Xie, Z.; Percival, J. R.; Pain, C. C.; Matar, O. K., Compressive advection and multi-component methods for interface-capturing, Internat. J. Numer. Methods Fluids, 80, 4, 256-282, 2016
[34] Obeysekara, A.; Salinas, P.; Heaney, C. E.; Kahouadji, L.; Via-Estrem, L.; Xiang, J.; Srinil, N.; Nicolle, A.; Matar, O. K.; Pain, C. C., Prediction of multiphase flows with sharp interfaces using anisotropic mesh optimisation, Adv. Eng. Softw., 160, Article 103044 pp., 2021
[35] Banchelli, F.; Garcia-Gasulla, M.; Houzeaux, G.; Mantovani, F., Benchmarking of state-of-the-art HPC clusters with a production CFD code, (PASC 20: Proceedings of the Platform for Advanced Scientific Computing Conference, 2020), 88-92
[36] Niemeyer, K. E.; Sung, C. J., Recent progress and challenges in exploiting graphics processors in computational fluid dynamics, J. Supercomput., 67, 528-564, 2014
[37] Afzal, A.; Ansari, Z.; Faizabadi, A. R.; Ramis, M. K., Parallelization strategies for computational fluid dynamics software: State of the art review, Arch. Comput. Methods Eng., 24, 337-363, 2017 · Zbl 1364.76152
[38] Memeti, S.; Li, L.; Pllana, S.; Kołodziej, J.; Kessler, C., Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: Programming productivity, performance, and energy consumption, (Proceedings of the 2017 Workshop on Adaptive Resource Management and Scheduling for Cloud Computing. Proceedings of the 2017 Workshop on Adaptive Resource Management and Scheduling for Cloud Computing, ARMS-CC ’17, 2017, Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 1-6
[39] Araujo, G.; Griebler, D.; Rockenbach, D. A.; Danelutto, M.; Fernandes, L. G., NAS parallel benchmarks with CUDA and beyond, Softw. - Pract. Exp., 53, 1, 53-80, 2023
[40] Lai, J.; Yu, H.; Tian, Z.; Li, H.; Peña, A. J., Hybrid MPI and CUDA parallelization for CFD applications on multi-GPU HPC clusters, Sci. Program., 2020, 2020
[41] Zhu, A.; Chang, Q.; Xu, J.; Ge, W., A dynamic load balancing algorithm for CFD-DEM simulation with CPU-GPU heterogeneous computing, Powder Technol., 428, Article 118782 pp., 2023
[42] Appleyard, J.; Drikakis, D., Higher-order CFD and interface tracking methods on highly-parallel MPI and GPU systems, Comput. Fluids, 46, 101-105, 2011 · Zbl 1431.76005
[43] Codyer, S. R.; Raessi, M.; Khanna, G., Using graphics processing units to accelerate numerical simulations of interfacial incompressible flows, (ASME 2012 Fluids Engineering Division Summer Meeting. ASME 2012 Fluids Engineering Division Summer Meeting, Fluids Engineering Division Summer Meeting, 1: Symposia, Parts A and B, 2012), 625-634
[44] Griebel, M.; Zaspel, P., A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations, Comput. Sci. Res. Dev., 25, 65-73, 2010
[45] Bryngelson, S. H.; Schmidmayer, K.; Coralic, V.; Meng, J. C.; Maeda, K.; Colonius, T., MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver, Comput. Phys. Comm., 266, Article 107396 pp., 2021 · Zbl 1516.76053
[46] Radhakrishnan, A.; Berre, H. L.; Wilfong, B.; Spratt, J.-S.; Rodriguez, M.; Colonius, T.; Bryngelson, S. H., Method for portable, scalable, and performant GPU-accelerated simulation of multiphase compressible flow, 2023, arXiv preprint arXiv:2305.09163
[47] Zhao, X.-Z.; Xu, T.-Y.; Ye, Z.-T.; Liu, W.-J., A TensorFlow-based new high-performance computational framework for CFD, J. Hydrodyn., 32, 4, 735-746, 2020
[48] Wang, Q.; Ihme, M.; Chen, Y.-F.; Anderson, J., A TensorFlow simulation framework for scientific computing of fluid flows on tensor processing units, Comput. Phys. Comm., 274, Article 108292 pp., 2022 · Zbl 1518.76041
[49] Chen, B.; Heaney, C. E.; Pain, C. C., Using AI libraries for incompressible computational fluid dynamics, 2024, arXiv preprint
[50] Phillips, T. R.F.; Heaney, C. E.; Chen, B.; Buchan, A. G.; Pain, C. C., Solving the discretised neutron diffusion equations using neural networks, Internat. J. Numer. Methods Engrg., 124, 21, 4659-4686, 2023 · Zbl 1535.65264
[51] Phillips, T. R.F.; Heaney, C. E.; Chen, B.; Buchan, A. G.; Pain, C. C., Solving the discretised Boltzmann transport equations using neural networks: Applications in neutron transport, 2023, arXiv preprint arXiv:2301.09991
[52] Dong, B.; Jiang, Q.; Shen, Z., Image restoration: Wavelet frame shrinkage, nonlinear evolution PDEs, and beyond, Multiscale Model. Simul., 15, 1, 606-660, 2017 · Zbl 1378.35159
[53] Long, Z.; Lu, Y.; Ma, X.; Dong, B., PDE-net: Learning PDEs from data, (Dy, J.; Krause, A., Proceedings of the 35th International Conference on Machine Learning. Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 80, 2018, PMLR), 3208-3216
[54] Yamashita, R.; Nishio, M.; Do, R. K.G.; Togashi, K., Convolutional neural networks: an overview and application in radiology, Insights Imaging, 9, 611-629, 2018
[55] Indolia, S.; Goswami, A. K.; Mishra, S.; Asopa, P., Conceptual understanding of convolutional neural network- A deep learning approach, Procedia Comput. Sci., 132, 679-688, 2018
[56] Mishra, M., Convolutional neural networks explained, 2022, https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939. Accessed: 14-11-2023
[57] Ronneberger, O.; Fischer, P.; Brox, T., U-net: Convolutional networks for biomedical image segmentation, (Medical Image Computing and Computer-Assisted Intervention. Medical Image Computing and Computer-Assisted Intervention, MICCAI. Medical Image Computing and Computer-Assisted Intervention. Medical Image Computing and Computer-Assisted Intervention, MICCAI, LNCS, vol. 9351, 2015, Springer), 234-241
[58] Woo, M.; Jordan, T.; Nandi, T.; Dietiker, J. F.; Guenther, C.; van Essendelft, D., Development of an equation-based parallelization method for multiphase particle-in-cell simulations, Eng. Comput., 39, 3577-3591, 2023
[59] Li, L.; Xiang, J.; Chen, B.; Heaney, C. E.; Dargaville, S.; Pain, C. C., Implementing the discontinuous-Galerkin finite element method using graph neural networks, 2024, SSRN preprint
[60] Abadi, M.; Agarwal, J.; Aand Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from www.tensorflow.org
[61] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S., Pytorch: An imperative style, high-performance deep learning library, (Wallach, H.; Larochelle, H.; Beygelzimer, A.; d’Alché-Buc, F.; Fox, E.; Garnett, R., Advances in Neural Information Processing Systems, Vol. 32, 2019, Curran Associates, Inc.), URL: https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
[62] Frostig, R.; Johnson, M.; Leary, C., Compiling machine learning programs via high-level tracing, 2018, URL: https://mlsys.org/Conferences/doc/2018/146.pdf
[63] Graphcore, R., Intelligence processing units, 2022, https://www.graphcore.ai/products/ipu. Accessed: 30-10-2023
[64] Cerebras, R., CS-2: A revolution in AI infrastructure, 2022, https://www.cerebras.net/product-system/. Accessed: 30-10-2023
[65] Carter Edwards, H.; Trott, C. R.; Sunderland, D., Kokkos: Enabling manycore performance portability through polymorphic memory access patterns, J. Parallel Distrib. Comput., 74, 12, 3202-3216, 2014
[66] Verdier, W.; Kestener, P.; Cartalade, A., Performance portability of lattice Boltzmann methods for two-phase flows with phase change, Comput. Methods Appl. Mech. Engrg., 370, Article 113266 pp., 2020 · Zbl 1506.76134
[67] Chattopadhyay, A.; Kotteda, V. M.K.; Kumar, V.; Spotz, W., Next generation exascale capable mutliphase solver with trilinos, (Proceedings of the ASME 2016 International Mechanical Engineering Congress & Exposition, Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis, 2016), Article V014T07A025 pp.
[68] Raissi, M.; Perdikaris, P.; Karniadakis, G., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707, 2019 · Zbl 1415.68175
[69] Buhendwa, A. B.; Adami, S.; Adams, N. A., Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks, Mach. Learn. Appl., 4, Article 100029 pp., 2021
[70] Merriënboer, B.v.; Breuleux, O.; Bergeron, A.; Lamblin, P., Automatic differentiation in ML: Where we are and where we should be going, (Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018, Curran Associates Inc.: Curran Associates Inc. Red Hook, NY, USA), 8771-8781
[71] Guenes Baydin, A.; Pearlmutter, B. A.; Radul, A. A.; M., S. J., Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res., 18, 1-43, 2018 · Zbl 06982909
[72] Li, Y., An AI-based integrated framework for anisotropic electrical resistivity imaging, 2024, in preparation
[73] Fletcher, C. A.J., Computational Techniques for Fluid Dynamics, 1998, Springer
[74] Linge, S.; Langtangen, H. P., Finite Difference Computing with PDEs: A Modern Software Approach, 207-322, 2017, Springer · Zbl 1377.65105
[75] Trefethen, L. N., Finite difference and spectral methods for ordinary and partial differential equations, 1996, unpublished text, available at http://people.maths.ox.ac.uk/trefethen/pdetext.html. (visited 01-03-2024)
[76] Bishop, C. M.; Bishop, H., Deep Learning: Foundations and Concepts, 287-324, 2024, Springer · Zbl 07828102
[77] Phillips, T. R.F., Neural network transport solver, 2022, https://github.com/trfphillips/Neural-Network-Transport-Solver
[78] Donéa, J.; Huerta, A., Finite Element Methods for Flow Problems, 2003, John Wiley & Sons
[79] Inguva, V.; Kenig, E. Y.; Blair Perot, J., A front-tracking method for two-phase flow simulation with no spurious currents, J. Comput. Phys., 456, Article 111006 pp., 2022 · Zbl 07518098
[80] Wesseling, P., Principles of Computational Fluid Dynamics, 2001, Springer: Springer Berlin · Zbl 0970.76002
[81] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 110, 3, 325-342, 1993 · Zbl 0844.76048
[82] Hansbo, P.; Johnson, C., Adaptive streamline diffusion methods for compressible flow using conservation variables, Comput. Methods Appl. Mech. Engrg., 87, 2, 267-280, 1991 · Zbl 0760.76046
[83] Greaves, D. M., Simulation of viscous water column collapse using adapting hierarchical grids, Internat. J. Numer. Methods Fluids, 50, 6, 693-711, 2006 · Zbl 1086.76047
[84] Nguyen, V.-T.; Nguyen, N. T.; Phan, T.-H.; Park, W.-G., Efficient three-equation two-phase model for free surface and water impact flows on a general curvilinear body-fitted grid, Comput. & Fluids, 196, Article 104324 pp., 2020 · Zbl 1519.76328
[85] Nguyen, V.-T.; Thang, V.-D.; Park, W.-G., A novel sharp interface-capturing method for two-and three-phase incompressible flows, Comput. & Fluids, 172, 147-161, 2018 · Zbl 1410.76254
[86] Kiely, P., NVIDIA A10 vs A100 GPUs for LLM and stable diffusion inference, 2023, https://www.baseten.co/blog/nvidia-a10-vs-a100-gpus-for-llm-and-stable-diffusion-inference/. Accessed: 01-03-2024
[87] Yeoh, G. H.; Barber, T., Assessment of interface-capturing methods in computational fluid dynamics (CFD) codes—A case study, J. Comput. Multip. Flows, 1, 2, 201-215, 2009
[88] Martin, J. C.; Moyce, W. J.; Martin, J.; Moyce, W.; Penney, W. G.; Price, A.; Thornhill, C., Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 244, 882, 312-324, 1952
[89] Duineveld, P., The rise velocity and shape of bubbles in pure water at high Reynolds number, J. Fluid Mech., 292, 325-332, 1995
[90] Clift, R.; Grace, J. R.; Weber, M. E., Bubbles, Drops, and Particles, 2005, Courier Corporation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.