×

Deep learning approximations for non-local nonlinear PDEs with Neumann boundary conditions. (English) Zbl 07826537

Summary: Nonlinear partial differential equations (PDEs) are used to model dynamical processes in a large number of scientific fields, ranging from finance to biology. In many applications standard local models are not sufficient to accurately account for certain non-local phenomena such as, e.g., interactions at a distance. Non-local nonlinear PDE models can accurately capture these phenomena, but traditional numerical approximation methods are infeasible when the considered non-local PDE is high-dimensional. In this article we propose two numerical methods based on machine learning and on Picard iterations, respectively, to approximately solve non-local nonlinear PDEs. The proposed machine learning-based method is an extended variant of a deep learning-based splitting-up type approximation method previously introduced in the literature and utilizes neural networks to provide approximate solutions on a subset of the spatial domain of the solution. The Picard iterations-based method is an extended variant of the so-called full history recursive multilevel Picard approximation scheme previously introduced in the literature and provides an approximate solution for a single point of the domain. Both methods are mesh-free and allow non-local nonlinear PDEs with Neumann boundary conditions to be solved in high dimensions. In the two methods, the numerical difficulties arising due to the dimensionality of the PDEs are avoided by (i) using the correspondence between the expected trajectory of reflected stochastic processes and the solution of PDEs (given by the Feynman-Kac formula) and by (ii) using a plain vanilla Monte Carlo integration to handle the non-local term. We evaluate the performance of the two methods on five different PDEs arising in physics and biology. In all cases, the methods yield good results in up to 10 dimensions with short run times. Our work extends recently developed methods to overcome the curse of dimensionality in solving PDEs.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

FPINNs; DeepXDE; DGM; AdaGrad; Adam

References:

[1] Kavallaris, N.I., Suzuki, T.: Non-local Partial Differential Equations for Engineering and Biology. Mathematics for Industry (Tokyo), vol. 31, p. 300. Springer, Cham (2018). doi:10.1007/978-3-319-67944-0 · Zbl 1387.00004
[2] D’Elia, M.; Du, Q.; Glusa, C.; Gunzburger, M.; Tian, X.; Zhou, Z., Numerical methods for nonlocal and fractional models, Acta Numer., 29, 1-124 (2020) · Zbl 07674560 · doi:10.1017/S096249292000001X
[3] Sunderasan, S., Financial Modeling, Long-Term Investments, 33-51 (2020), London: Routledge India, London · doi:10.4324/9780367817909-3
[4] Lacey, AA, Thermal runaway in a non-local problem modelling Ohmic heating. I. Model derivation and some special cases, Eur. J. Appl. Math., 6, 2, 127-144 (1995) · Zbl 0843.35008 · doi:10.1017/S095679250000173X
[5] Caglioti, E.; Lions, P-L; Marchioro, C.; Pulvirenti, M., A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, II. Comm. Math. Phys., 174, 2, 229-260 (1995) · Zbl 0840.76002 · doi:10.1007/BF02099602
[6] Barone, A.; Esposito, F.; Magee, CJ; Scott, AC, Theory and applications of the sine-Gordon equation, La Rivista del Nuovo Cimento, 1, 2, 227-267 (1971) · doi:10.1007/BF02820622
[7] Gajewski, H.; Zacharias, K., On a nonlocal phase separation model, J. Math. Anal. Appl., 286, 1, 11-31 (2003) · Zbl 1032.35078 · doi:10.1016/S0022-247X(02)00425-0
[8] Coleman, S., Quantum sine-Gordon equation as the massive Thirring model, Bosonization, 128-137 (1994), Singapore: World Scientific, Singapore · doi:10.1142/9789812812650_0013
[9] Hairer, M.; Shen, H., The dynamical sine-Gordon model, Comm. Math. Phys., 341, 3, 933-989 (2016) · Zbl 1336.60120 · doi:10.1007/s00220-015-2525-3
[10] Rubinstein, J.; Sternberg, P., Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48, 3, 249-264 (1992) · Zbl 0763.35051 · doi:10.1093/imamat/48.3.249
[11] Stoleriu, I., Non-local models for solid-solid phase transitions, ROMAI J., 7, 1, 157-170 (2011) · Zbl 1313.47174
[12] Merton, RC, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ., 3, 1-2, 125-144 (1976) · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2
[13] Chan, T., Pricing contingent claims on stocks driven by Lévy processes, Ann. Appl. Probab., 9, 2, 504-528 (1999) · Zbl 1054.91033 · doi:10.1214/aoap/1029962753
[14] Kou, SG, A jump-diffusion model for option pricing, Manag. Sci., 48, 8, 1086-1101 (2002) · Zbl 1216.91039 · doi:10.1287/mnsc.48.8.1086.166
[15] Abergel, F.; Tachet, R., A nonlinear partial integro-differential equation from mathematical finance, Discr. Contin. Dyn. Syst., 27, 3, 907-917 (2010) · Zbl 1191.35151 · doi:10.3934/dcds.2010.27.907
[16] Benth, FE; Karlsen, KH; Reikvam, K., Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: a viscosity solution approach, Finance Stoch., 5, 3, 275-303 (2001) · Zbl 0978.91039 · doi:10.1007/PL00013538
[17] Cruz, JMTS; Ševčovič, D., On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models, Jpn. J. Ind. Appl. Math., 37, 3, 697-721 (2020) · Zbl 1474.45064 · doi:10.1007/s13160-020-00414-2
[18] Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series, Boca Raton (2004) · Zbl 1052.91043
[19] Huang, J.; Cen, Z.; Le, A., A finite difference scheme for pricing American put options under Kou’s jump-diffusion model, J. Funct. Spaces Appl. (2013) · Zbl 1264.91138 · doi:10.1155/2013/651573
[20] Gan, X.; Yang, Y.; Zhang, K., A robust numerical method for pricing American options under Kou’s jump-diffusion models based on penalty method, J. Appl. Math. Comput., 62, 1-2, 1-21 (2020) · Zbl 1475.91399 · doi:10.1007/s12190-019-01270-1
[21] Amadori, AL, Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach, Differ. Integr. Equ., 16, 7, 787-811 (2003) · Zbl 1052.35083
[22] Pham, H.: Continuous-time Stochastic Control and Optimization with Financial Applications. Stochastic Modelling and Applied Probability, vol. 61. Springer, Berlin (2009). doi:10.1007/978-3-540-89500-8 · Zbl 1165.93039
[23] Henry-Labordère, P.: Counterparty Risk Valuation: A Marked Branching Diffusion Approach. arXiv:1203.2369 (2012)
[24] Oechssler, J.; Riedel, F., Evolutionary dynamics on infinite strategy spaces, Econ. Theory, 17, 1, 141-162 (2001) · Zbl 0982.91002 · doi:10.1007/PL00004092
[25] Kavallaris, NI; Lankeit, J.; Winkler, M., On a degenerate nonlocal parabolic problem describing infinite dimensional replicator dynamics, SIAM J. Math. Anal., 49, 2, 954-983 (2017) · Zbl 1365.35195 · doi:10.1137/15M1053840
[26] Hamel, F.; Lavigne, F.; Martin, G.; Roques, L., Dynamics of adaptation in an anisotropic phenotype-fitness landscape, Nonlinear Anal. Real World Appl., 54, 103107 (2020) · Zbl 1437.35670 · doi:10.1016/j.nonrwa.2020.103107
[27] Alfaro, M.; Carles, R., Replicator-mutator equations with quadratic fitness, Proc. Am. Math. Soc., 145, 12, 5315-5327 (2017) · Zbl 1376.92037 · doi:10.1090/proc/13669
[28] Alfaro, M.; Veruete, M., Evolutionary branching via replicator-mutator equations, J. Dynam. Differ. Equ., 31, 4, 2029-2052 (2019) · Zbl 1426.92047 · doi:10.1007/s10884-018-9692-9
[29] Banerjee, M.; Petrovskii, SV; Volpert, V., Nonlocal reaction-diffusion models of heterogeneous wealth distribution, Mathematics, 9, 4, 351 (2021) · doi:10.3390/math9040351
[30] Lorz, A.; Lorenzi, T.; Hochberg, ME; Clairambault, J.; Perthame, B., Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM Math. Model. Numer. Anal., 47, 2, 377-399 (2013) · Zbl 1274.92025 · doi:10.1051/m2an/2012031
[31] Chen, L.; Painter, K.; Surulescu, C.; Zhigun, A., Mathematical models for cell migration: A non-local perspective, Philos. Trans. R. Soc. B, 375, 1807, 20190379 (2020) · doi:10.1098/rstb.2019.0379
[32] Villa, C.; Chaplain, MAJ; Lorenzi, T., Evolutionary dynamics in vascularised tumours under chemotherapy: Mathematical modelling, asymptotic analysis and numerical simulations, Vietnam J. Math., 49, 1, 143-167 (2021) · Zbl 1464.35381 · doi:10.1007/s10013-020-00445-9
[33] Pájaro, M.; Alonso, AA; Otero-Muras, I.; Vázquez, C., Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting, J. Theoret. Biol., 421, 51-70 (2017) · Zbl 1370.92061 · doi:10.1016/j.jtbi.2017.03.017
[34] Fisher, RA, The wave of advance of advantageous genes, Ann. Eugen., 7, 4, 355-369 (1937) · JFM 63.1111.04 · doi:10.1111/j.1469-1809.1937.tb02153.x
[35] Hamel, F.; Nadirashvili, N., Travelling fronts and entire solutions of the Fisher-KPP equation in \({{\mathbb{R} }}^N\), Arch. Ration. Mech. Anal., 157, 2, 91-163 (2001) · Zbl 0987.35072 · doi:10.1007/PL00004238
[36] Bian, S.; Chen, L.; Latos, EA, Global existence and asymptotic behavior of solutions to a nonlocal Fisher-KPP type problem, Nonlinear Anal., 149, 165-176 (2017) · Zbl 1355.35189 · doi:10.1016/j.na.2016.10.017
[37] Perthame, B.; Génieys, S., Concentration in the nonlocal Fisher equation: The Hamilton-Jacobi limit, Math. Model. Nat. Phenom., 2, 4, 135-151 (2007) · Zbl 1337.35077 · doi:10.1051/mmnp:2008029
[38] Berestycki, H.; Nadin, G.; Perthame, B.; Ryzhik, L., The non-local Fisher-KPP equation: Travelling waves and steady states, Nonlinearity, 22, 12, 2813-2844 (2009) · Zbl 1195.35088 · doi:10.1088/0951-7715/22/12/002
[39] Houchmandzadeh, B.; Vallade, M., Fisher waves: An individual-based stochastic model, Phys. Rev. E, 96, 1, 012414 (2017) · doi:10.1103/PhysRevE.96.012414
[40] Wang, F.; Xue, L.; Zhao, K.; Zheng, X., Global stabilization and boundary control of generalized Fisher/KPP equation and application to diffusive SIS model, J. Differ. Equ., 275, 391-417 (2021) · Zbl 1465.35281 · doi:10.1016/j.jde.2020.11.031
[41] Burger, R.; Hofbauer, J., Mutation load and mutation-selection-balance in quantitative genetic traits, J. Math. Biol., 32, 3, 193-218 (1994) · Zbl 0823.92013 · doi:10.1007/BF00163878
[42] Génieys, S.; Volpert, V.; Auger, P., Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Model. Nat. Phenom., 1, 1, 65-82 (2006) · Zbl 1201.92055 · doi:10.1051/mmnp:2006004
[43] Berestycki, H.; Jin, T.; Silvestre, L., Propagation in a non local reaction diffusion equation with spatial and genetic trait structure, Nonlinearity, 29, 4, 1434-1466 (2016) · Zbl 1338.35238 · doi:10.1088/0951-7715/29/4/1434
[44] Nordbotten, JM; Stenseth, NC, Asymmetric ecological conditions favor Red-Queen type of continued evolution over stasis, Proc. Natl. Acad. Sci. U.S.A., 113, 7, 1847-1852 (2016) · doi:10.1073/pnas.1525395113
[45] Nordbotten, JM; Levin, SA; Szathmáry, E.; Stenseth, NC, Ecological and evolutionary dynamics of interconnectedness and modularity, Proc. Natl. Acad. Sci. U.S.A., 115, 4, 750-755 (2018) · Zbl 1416.37076 · doi:10.1073/pnas.1716078115
[46] Roques, L.; Bonnefon, O., Modelling population dynamics in realistic landscapes with linear elements: A mechanistic-statistical reaction-diffusion approach, PLoS ONE, 11, 3, 0151217 (2016) · doi:10.1371/journal.pone.0151217
[47] Doebeli, M.; Ispolatov, I., Complexity and diversity, Science, 328, 5977, 494-497 (2010) · Zbl 1226.92053 · doi:10.1126/science.1187468
[48] Nordbotten, JM; Bokma, F.; Hermansen, JS; Stenseth, NC, The dynamics of trait variance in multi-species communities, R. Soc. Open Sci., 7, 8, 200321 (2020) · doi:10.1098/rsos.200321
[49] Bellman, R., Dynamic Programming. Princeton Landmarks in Mathematics (2010), Princeton: Princeton University Press, Princeton · Zbl 0208.17501
[50] Metropolis, N.; Ulam, S., The Monte Carlo method, J. Am. Stat. Assoc., 44, 247, 335-341 (1949) · Zbl 0033.28807 · doi:10.1080/01621459.1949.10483310
[51] Bauer, WF, The Monte Carlo method, J. Soc. Ind. Appl. Math., 6, 4, 438-451 (1958) · Zbl 0084.34601 · doi:10.1137/0106028
[52] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (2015) · doi:10.1038/nature14539
[53] Beck, C.; Hutzenthaler, M.; Jentzen, A.; Kuckuck, B., An overview on deep learning-based approximation methods for partial differential equations, Discr. Contin. Dyn. Syst. Ser. B, 28, 6, 3697-3746 (2023) · Zbl 07675828 · doi:10.3934/dcdsb.2022238
[54] Weinan, E.; Han, J.; Jentzen, A., Algorithms for solving high dimensional PDEs: From nonlinear Monte Carlo to machine learning, Nonlinearity, 35, 1, 278-310 (2022) · Zbl 1490.60202 · doi:10.1088/1361-6544/ac337f
[55] Blechschmidt, J.; Ernst, OG, Three ways to solve partial differential equations with neural networks—a review, GAMM-Mitteilungen, 44, 2, 202100006 (2021) · Zbl 1530.65137 · doi:10.1002/gamm.202100006
[56] Karniadakis, GE; Kevrekidis, IG; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L., Physics-informed machine learning, Nat. Rev. Phys., 3, 6, 422-440 (2021) · doi:10.1038/s42254-021-00314-5
[57] Cuomo, S.; Di Cola, VS; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F., Scientific machine learning through physics-informed neural networks: Where we are and what’s next, J. Sci. Comput., 92, 3, 88 (2022) · Zbl 07568980 · doi:10.1007/s10915-022-01939-z
[58] Yunus, R.B., Abdul Karim, S.A., Shafie, A., Izzatullah, M., Kherd, A., Hasan, M.K., Sulaiman, J.: An overview on deep learning techniques in solving partial differential equations. In: Abdul Karim, S.A. (ed.) Intelligent Systems Modeling and Simulation II, pp. 37-47. Springer, Cham (2022). doi:10.1007/978-3-031-04028-3_4
[59] Huang, S., Feng, W., Tang, C., Lv, J.: Partial differential equations meet deep neural networks: A survey. arXiv:2211.05567 (2022)
[60] E, W., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349-380 (2017). doi:10.1007/s40304-017-0117-6 · Zbl 1382.65016
[61] Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. U.S.A. 115(34), 8505-8510 (2018). doi:10.1073/pnas.1718942115 · Zbl 1416.35137
[62] Beck, C.; Becker, S.; Grohs, P.; Jaafari, N.; Jentzen, A., Solving the Kolmogorov PDE by means of deep learning, J. Sci. Comput., 88, 73-28 (2021) · Zbl 1490.65006 · doi:10.1007/s10915-021-01590-0
[63] Chan-Wai-Nam, Q.; Mikael, J.; Warin, X., Machine learning for semi linear PDEs, J. Sci. Comput., 79, 3, 1667-1712 (2019) · Zbl 1433.68332 · doi:10.1007/s10915-019-00908-3
[64] Huré, C.; Pham, H.; Warin, X., Deep backward schemes for high-dimensional nonlinear PDEs, Math. Comp., 89, 1547-1579 (2020) · Zbl 1440.60063 · doi:10.1090/mcom/3514
[65] Beck, C.; Becker, S.; Cheridito, P.; Jentzen, A.; Neufeld, A., Deep splitting method for parabolic PDEs, SIAM J. Sci. Comput., 43, 5, 3135-3154 (2021) · Zbl 1501.65054 · doi:10.1137/19M1297919
[66] Cox, S.; Neerven, J., Pathwise Hölder convergence of the implicit-linear Euler scheme for semi-linear SPDEs with multiplicative noise, Numer. Math., 125, 2, 259-345 (2013) · Zbl 1284.65009 · doi:10.1007/s00211-013-0538-4
[67] Gyöngy, I.; Krylov, N., On the splitting-up method and stochastic partial differential equations, Ann. Probab., 31, 2, 564-591 (2003) · Zbl 1028.60058 · doi:10.1214/aop/1048516528
[68] Hochbruck, M.; Ostermann, A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, 3, 1069-1090 (2005) · Zbl 1093.65052 · doi:10.1137/040611434
[69] Hutzenthaler, M.; Jentzen, A.; Kruse, T.; Nguyen, TA; Wurstemberger, P., Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, Proc. A., 476, 2244, 20190630 (2020) · Zbl 1472.65157 · doi:10.1098/rspa.2019.0630
[70] E, W., Hutzenthaler, M., Jentzen, A., Kruse, T.: On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations. J. Sci. Comput. 79(3), 1534-1571 (2019). doi:10.1007/s10915-018-00903-0 · Zbl 1418.65149
[71] E, W., Hutzenthaler, M., Jentzen, A., Kruse, T.: Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. Partial Differ. Equ. Appl. 2(6), 80 (2021). doi:10.1007/s42985-021-00089-5 · Zbl 1476.65273
[72] Heinrich, S., Monte Carlo complexity of global solution of integral equations, J. Complex., 14, 2, 151-175 (1998) · Zbl 0920.65090 · doi:10.1006/jcom.1998.0471
[73] Heinrich, S.; Sindambiwe, E., Monte Carlo complexity of parametric integration, J. Complex., 15, 3, 317-341 (1999) · Zbl 0958.68068 · doi:10.1006/jcom.1999.0508
[74] Grohs, P.; Voigtlaender, F., Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces, Found. Comput. Math. (2023) · Zbl 1529.41029 · doi:10.1007/s10208-023-09607-w
[75] Raissi, M.; Perdikaris, P.; Karniadakis, GE, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175 · doi:10.1016/j.jcp.2018.10.045
[76] Sirignano, J.; Spiliopoulos, K., DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375, 1339-1364 (2018) · Zbl 1416.65394 · doi:10.1016/j.jcp.2018.08.029
[77] Pang, G.; Lu, L.; Karniadakis, GE, fPINNs: Fractional physics-informed neural networks, SIAM J. Sci. Comput., 41, 4, 2603-2626 (2019) · Zbl 1420.35459 · doi:10.1137/18M1229845
[78] Lu, L.; Meng, X.; Mao, Z.; Karniadakis, GE, DeepXDE: A deep learning library for solving differential equations, SIAM Rev., 63, 1, 208-228 (2021) · Zbl 1459.65002 · doi:10.1137/19M1274067
[79] Guo, L.; Wu, H.; Yu, X.; Zhou, T., Monte Carlo fPINNs: Deep learning method for forward and inverse problems involving high dimensional fractional partial differential equations, Comput. Methods Appl. Mech. Engrg., 400 (2022) · Zbl 1507.65012 · doi:10.1016/j.cma.2022.115523
[80] Al-Aradi, A.; Correia, A.; Jardim, G.; de Freitas Naiff, D.; Saporito, Y., Extensions of the deep Galerkin method, Appl. Math. Comput., 430 (2022) · Zbl 1510.65010 · doi:10.1016/j.amc.2022.127287
[81] Yuan, L.; Ni, Y-Q; Deng, X-Y; Hao, S., A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations, J. Comput. Phys., 462 (2022) · Zbl 07536740 · doi:10.1016/j.jcp.2022.111260
[82] Frey, R.; Köck, V., Deep neural network algorithms for parabolic PIDEs and applications in insurance and finance, Computation, 10, 11, 201 (2022) · doi:10.3390/computation10110201
[83] Frey, R., Köck, V.: Convergence analysis of the deep splitting scheme: the case of partial integro-differential equations and the associated FBSDEs with jumps. arXiv:2206.01597 (2022)
[84] Castro, J., Deep learning schemes for parabolic nonlocal integro-differential equations, Partial Differ. Equ. Appl., 3, 77 (2022) · Zbl 1515.60249 · doi:10.1007/s42985-022-00213-z
[85] Gonon, L.; Schwab, C., Deep ReLU neural networks overcome the curse of dimensionality for partial integrodifferential equations, Anal. Appl. (Singap.), 21, 1, 1-47 (2023) · Zbl 07652560 · doi:10.1142/S0219530522500129
[86] Lagaris, IE; Likas, A.; Fotiadis, DI, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 5, 987-1000 (1998) · doi:10.1109/72.712178
[87] Lagaris, IE; Likas, AC; Papageorgiou, DG, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw., 11, 5, 1041-1049 (2000) · doi:10.1109/72.870037
[88] McFall, KS; Mahan, JR, Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions, IEEE Trans. Neural Netw., 20, 8, 1221-1233 (2009) · doi:10.1109/TNN.2009.2020735
[89] Sukumar, N.; Srivastava, A., Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks, Comput. Methods Appl. Mech. Engrg., 389 (2022) · Zbl 1507.65284 · doi:10.1016/j.cma.2021.114333
[90] Wang, S.; Perdikaris, P., Deep learning of free boundary and Stefan problems, J. Comput. Phys. (2020) · Zbl 07511408 · doi:10.1016/j.jcp.2020.109914
[91] E, W., Yu, B.: The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1-12 (2018). doi:10.1007/s40304-018-0127-z · Zbl 1392.35306
[92] Liao, Y.; Ming, P., Deep Nitsche method: Deep Ritz method with essential boundary conditions, Commun. Comput. Phys., 29, 5, 1365-1384 (2021) · Zbl 1473.65309 · doi:10.4208/cicp.OA-2020-0219
[93] Chen, J.; Du, R.; Wu, K., A comparison study of deep Galerkin method and deep Ritz method for elliptic problems with different boundary conditions, Commun. Math. Res., 36, 3, 354-376 (2020) · Zbl 1463.65363 · doi:10.4208/cmr.2020-0051
[94] Zang, Y.; Bao, G.; Ye, X.; Zhou, H., Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys., 411 (2020) · Zbl 1436.65156 · doi:10.1016/j.jcp.2020.109409
[95] Duchi, J.; Hazan, E.; Singer, Y., Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res., 12, 61, 2121-2159 (2011) · Zbl 1280.68164
[96] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)
[97] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 448-456. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/ioffe15.html
[98] E, W., Han, J., Jentzen, A.: Algorithms for solving high dimensional PDEs: From nonlinear Monte Carlo to machine learning. Nonlinearity 35(1), 278-310 (2021). doi:10.1088/1361-6544/ac337f · Zbl 1490.60202
[99] Becker, S.; Braunwarth, R.; Hutzenthaler, M.; Jentzen, A.; Wurstemberger, P., Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations, Commun. Comput. Phys., 28, 5, 2109-2138 (2020) · Zbl 1473.65251 · doi:10.4208/cicp.OA-2020-0130
[100] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 249-256. PMLR, Chia Laguna Resort, Sardinia, Italy (2010). https://proceedings.mlr.press/v9/glorot10a.html
[101] Beck, C., E, W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. arXiv:1709.05963 (2017) · Zbl 1442.91116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.