×

Humbert generalized fractional differenced ARMA processes. (English) Zbl 07733080

Summary: In this article, we use the generating functions of the Humbert polynomials to define two types of Humbert generalized fractional differenced ARMA processes. We present stationarity and invertibility conditions for the introduced models. The singularities for the spectral densities of the introduced models are investigated. In particular, Pincherle ARMA, Horadam ARMA and Horadam-Pethe ARMA processes are studied. It is shown that the Pincherle ARMA process has long memory property for \(u = 0\). Additionally, we employ the Whittle quasi-likelihood technique to estimate the parameters of the introduced processes. Through this estimation method, we attain results regarding the consistency and normality of the parameter estimators. We also conduct a comprehensive simulation study to validate the performance of the estimation technique for Pincherle ARMA process. Moreover, we apply the Pincherle ARMA process to real-world data, specifically to Spain’s 10 years treasury bond yield data, to demonstrate its practical utility in capturing and forecasting market dynamics.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M15 Inference from stochastic processes and spectral analysis
60E07 Infinitely divisible distributions; stable distributions
60G51 Processes with independent increments; Lévy processes
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

Software:

artfima; TFPDE

References:

[1] Granger, C. W.J.; Joyeux, R., An introduction to long-memory time series models and fractional differencing, J Time Series Anal, 1, 15-29 (1980) · Zbl 0503.62079
[2] Hosking, J. R.M., Fractional differencing, Biometrika, 68, 1, 165-176 (1981) · Zbl 0464.62088
[3] Yule, G. U., Why do we sometimes get nonsense-correlations between time series? A study in sampling and the nature of time series, J R Stat Soc, 89, 1-64 (1926) · JFM 52.0532.04
[4] Slutsky, E., The sommation of random causes as the source of cyclic processes, Econometrics, 5, 105-146 (1937) · JFM 63.1131.03
[5] Wold, H., A study in the analysis of stationary time series (1938), Almgrist & Wiksell: Almgrist & Wiksell Stockholm · JFM 64.1200.02
[6] Box, G. E.P.; Jenkins, G. M., (Time series analysis: forecasting and control (1976), Holden-Day: Holden-Day San Francisco) · Zbl 0363.62069
[7] Giraitis, L.; Koul, H. L.; Surgailis, D., Large sample inference for long memory processes (2012), Imperial College Press: Imperial College Press London · Zbl 1279.62016
[8] Anh, V. V.; Knopova, V. P.; Leonenko, N. N., Continuous-time stochastic processes with cyclical long-range dependence, Aust N Z J Stat, 46, 2, 275-296 (2004) · Zbl 1080.60034
[9] Castro, T. B.; Rachinger, H., Aggregation of seasonal long-memory processes, Econ Stat, 17, 95-106 (2021)
[10] Dissanayake, G. S.; Peiris, M. S.; Proietti, T., Fractionally differenced gegenbauer processes with long memory: a review, Statist Sci, 33, 413-426 (2018) · Zbl 1403.62160
[11] Ivanov, A. V.; Leonenko, N.; Ruiz-Medina, M. D.; Savich, I. N., Limit theorems for weighted nonlinear transformations of Gaussian stationary processes with singular spectra, Ann Probab, 41, 2, 1088-1114 (2013) · Zbl 1329.60031
[12] Chung, C.-F., Estimating a generalized long memory process, J Appl Econometr, 73, 1, 237-259 (1996) · Zbl 0854.62083
[13] Kumar, A.; Vellaisamy, P., Inverse tempered stable subordinators, Statist Probab Lett, 103, 134-141 (2014) · Zbl 1328.60043
[14] Rosinski, J., Tempering stable processes, Stoch Process Appl, 117, 677-707 (2007) · Zbl 1118.60037
[15] Sabzikar, F.; McLeod, A. I.; Meerschaert, M. M., Parameter estimation for ARTFIMA time series, J Statist Plann Inference, 200, 129-145 (2019) · Zbl 1421.62130
[16] Torricelli, L.; Cerioli, A., Tempered positive Linnik processes and their representations, Electron J Stat, 16, 2, 6313-6347 (2022) · Zbl 1504.60024
[17] Zheng, M.; Karniadakis, G. E., Numerical methods for SPDEs with tempered stable processes, SIAM J Sci Comput, 37, 3 (2015) · Zbl 1320.65020
[18] Grabchak, M., Tempered stable distributions: stochastic models for multiscale processes (2016), Springer: Springer New York · Zbl 1361.60003
[19] Baeumer, B.; Meerschaert, M. M., Tempered stable Lévy motion and transient super-diffusion, J Comput Appl Math, 233, 2438-2448 (2010) · Zbl 1423.60079
[20] Reisen, V. A.; Rodrigues, A. L.; Palma, W., Estimation of seasonal fractionally integrated processes, Comput Statist Data Anal, 50, 2, 568-582 (2006) · Zbl 1432.62313
[21] Giraitis, L.; Hidalgo, J.; Robinson, P. M., Gaussian estimation of parametric spectral density with unknown pole, Ann Statist, 29, 4, 987-1023 (2001) · Zbl 1012.62098
[22] Thawonmas, R.; Damrongthammasakul, S., Sales forecasting in fashion retail using ARIMA models, Int J Adv Comput Sci Appl, 10, 1, 77-81 (2019)
[23] Can, M.; Gucuyener, E.; Bostanci, A., Time series analysis of atmospheric pollutants using ARMA models, Fresenius Environ Bull, 28, 8, 6107-6115 (2019)
[24] Humbert, P., Some extensions of Pincherle’s polynomials, Proc Edinb Math Soc, 39, 1, 21-24 (1920)
[25] Gould, H. W., Inverse series relations and other expansions involving Humbert polynomials, Duke Math J, 32, 4, 697-711 (1965) · Zbl 0135.12001
[26] Milovanovic, G. V.; Djordjevic, G. B., On some properties of Humbert’s polynomials, Fibonacci Quart, 25, 356-360 (1987) · Zbl 0635.33006
[27] Srivastava, H.; Manocha, H., Treatise on generating functions (1984), John Wiley & Sons: John Wiley & Sons New York · Zbl 0535.33001
[28] Pincherle, S., Una nuova estensione delle funzioni sferiche, (Memorie Della Accademia Reale Di Bologna (in Italian), I (1891)), 337-369 · JFM 23.0514.01
[29] Abramowitz, M.; Stegun, I. A., (Handbook of mathematical functions with formulas, graphs and mathematical tables (1992), Dover: Dover New York) · Zbl 0515.33001
[30] Bartle, Robert G.; Donald, R. Sherbert, Introduction to real analysis (2000), John Wiley: John Wiley New York · Zbl 0494.26002
[31] Gamelin, T. W., Complex analysis (2001), Springer: Springer New York · Zbl 0978.30001
[32] Gray, H. L.; Zhang, N. F.; Woodward, W. A., On generalized fractional processes, J Time Series Anal, 10, 233-257 (1989) · Zbl 0685.62075
[33] Baker, B., On the relation between Pincherie’s polynomials and the hypergeometric function, Proc Edinb Math Soc, 39, 4, 58-62 (1921)
[34] Horadam, A. F., Gegenbauer polynomials revisited, Fibonacci Quart, 23, 4, 294-299 (1985) · Zbl 0589.10016
[35] Horadam, A. F.; Pethe, S., Polynomials associated with Gegenbauer polynomials, Fibonacci Quart, 19, 5, 393-398 (1981) · Zbl 0477.10013
[36] Hannan, E. J., The asymptotic theory of linear time series models, J Appl Probab, 10, 01, 130-145 (1973) · Zbl 0261.62073
[37] Fox, R.; Taqqu, M. S., Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann Statist, 14, 2, 517-532 (1986) · Zbl 0606.62096
[38] Anh, V. V.; Leonenko, N. N.; Sakhno, L. M., On a class of minimum contrast estimators for fractional stochastic processes and fields, J Statist Plann Inference, 123, 161-185 (2004) · Zbl 1103.62092
[39] Anh, V. V.; Leonenko, N. N.; Sakhno, L. M., Minimum contrast estimation of random processes based on information of second and third orders, J Statist Plann Inference, 137, 4, 1302-1331 (2007) · Zbl 1107.62082
[40] Espejo, R. M.; Leonenko, N.; Ruiz-Medina, M. D., Gegenbauer random fields, Random Oper Stoch Equ, 22, 1, 1-16 (2014) · Zbl 1354.60041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.