×

On some properties of Humbert’s polynomials. (English) Zbl 0635.33006

The authors consider the polynomials \(\{p^{\lambda}_{n,m}\}^{\infty}_{n=0}\) defined by \(p^{\lambda}_{n,m}(x) = \Pi^{\lambda}_{n,m}(2x/m)\) where \(\{\Pi^{\lambda}_{n,m}\}^{\infty}_{n=0}\) are the Humbert polynomials. They prove two theorems.
Theorem 1: Let D be the differentiation operator. Then the following equalities hold: \[ D^ k p^{\lambda}_{n+k,m}(x)=2^ k(\lambda)_ kp_{n,m}^{\lambda +k}(x), \] where \[ (\lambda)_ k=(\lambda)(\lambda +1)...(\lambda +k-1), \]
\[ 2n p^{\lambda}_{n,m}(x)=2x Dp^{\lambda}_{n,m}(x)-mDp^{\lambda}_{n-m+1,m}(x), \]
\[ mD p^{\lambda}\text{ near } p\in \partial G \] only if \(\tilde H_ bf\) has a holomorphic extension to a neighborhood of p in \({\mathbb{C}}^ n.\) There is also a \(C^{\infty}\) version of this theorem, and in the case of the Lewy equation a necessary and sufficient condition for local solvability is obtained. Other topics discussed include: pseudoconvexity and the Levi-problem, the Newlander-Nirenberg theorem, local and global regularity for the \({\bar \partial}\)-equation [the author, Trans. Am. Math. Soc. 181, 273-292 (1973; Zbl 0276.35071); Proc. Nat. Acad. Sci. USA 71, 2912-2914 (1974; Zbl 0284.35055)], and a theorem of L. Boutet de Monvel on the imbedding of CR manifolds [Sémin. Goulaouic-Lions- Schwartz 1974-1975: Équat. dériv. part. lin. nonlin., Exposé IX, 13 p. (1975; Zbl 0317.58003)].

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
05A15 Exact enumeration problems, generating functions
11B37 Recurrences
39A70 Difference operators