×

Multi-parameter Mathieu, and alternating Mathieu series. (English) Zbl 1508.33007

Summary: The main purpose of this paper is to present a multi-parameter study of the familiar Mathieu series and the alternating Mathieu series \(\mathcal{S}(\boldsymbol{r})\) and \(\widetilde{\mathcal{S}}(\boldsymbol{r})\). The computable series expansions of the their related integral representations are obtained in terms of higher transcendental hypergeometric functions like Lauricella’s hypergeometric function \(F_C^{(m)}[\boldsymbol{x}]\), Fox-Wright \(\Psi\) function, Srivastava-Daoust \(S\) generalized Lauricella function, Riemann Zeta and Dirichlet Eta functions, while the extensions concern products of Bessel and modified Bessel functions of the first kind, hyper-Bessel and Bessel-Clifford functions. Auxiliary Laplace-Mellin transforms, bounding inequalities for the hyper-Bessel and Bessel-Clifford functions are established- which are also of independent but considerable interest. A set of bounding inequalities are presented either for the hyper-Bessel and Bessel-Clifford functions which are to our best knowledge new, or also for all considered extended Mathieu-type series. Next, functional bounding inequalities, log-convexity properties and Turán inequality results are presented for the investigated extensions of multi-parameter Mathieu-type series. We end the exposition by a thorough discussion closes the exposition including important details, bridges to occuring new questions like the similar kind multi-parameter treatment of the complete Butzer-Flocke-Hauss \(\Omega\) function which is intimately connected with the Mathieu series family.

MSC:

33C20 Generalized hypergeometric series, \({}_pF_q\)
26A51 Convexity of real functions in one variable, generalizations
26D15 Inequalities for sums, series and integrals
33C65 Appell, Horn and Lauricella functions
33E05 Elliptic functions and integrals
33E20 Other functions defined by series and integrals
44A10 Laplace transform
Full Text: DOI

References:

[1] s, I. A.; Baricz, A.; Singh, S., Geometric and monotonic properties of hyper-bessel functions, Ramanujan J., 51, 2, 275-295 (2020) · Zbl 1481.30004
[2] Butzer, P. L.; Baricz, A.; Pogány, T. K., Alternating mathieu series, hilbert - Eisenstein series and their generalized omega functions, (Rassias, T.; Milovanović, G. V. (2014), Springer: Springer New York), 775-808 · Zbl 1326.33031
[3] Springer,Cham · Zbl 1450.33001
[4] Butzer, P. L.; Flocke, S.; Hauss, M., Euler functions \(e_\alpha ( z )\) with complex \(\alpha\) and applications, in g.a. anastassiou and s.t. rachev (eds.), Approximation, Probability and Related Fields, Plenum Press, New York, 127-150 (1994) · Zbl 0849.11021
[5] Butzer, P. L.; Pogány, T. K., A fresh approach to classical Eisenstein series and the newer Hilbert-Eisenstein series, Int. J. Number Theory, 13, 4, 885-911 (2017) · Zbl 1422.11039
[6] Butzer, P. L.; Pogány, T. K.; Srivastava, H. M., A linear ODE for the omega function associated with the euler function \(e_\alpha ( z )\) and the bernoulli function \(b_\alpha ( z )\), Appl. Math. Lett., 19, 1073-1077 (2006) · Zbl 1134.33326
[7] Caratelli, D.; Natalini, P.; Ricci, P. E., Fourier solution of the wave equation for a star-like-shaped vibrating membrane, Comput. Math. Appl., 59, 1, 176-184 (2010) · Zbl 1189.35168
[8] Caratelli, D.; Natalini, P.; Ricci, P. E.; Yarovoy, A., The Neumann problem for the Helmholtz equation in a starlike planar domain, Appl. Math. Comput., 216, 2, 556-564 (2010) · Zbl 1188.65158
[9] Casimir, H. B.G., On the attraction between two perfectly conducting plates, Proc. Akad. Wet. Amsterdam, 51, 793-795 (1948) · Zbl 0031.19005
[10] H.B.G. Casimir, D. Polder, Phys. Rev. 73(4) (1948) 360-372. The influence of retardation on the London-van der Waals forces · Zbl 0037.28103
[11] Art. No. (100) · Zbl 1072.26011
[12] Chaggara, H.; Romdhane, N. B., On the zeros of the hyper-Bessel function, Integral Transforms Spec. Funct., 26, 2, 96-101 (2015) · Zbl 1314.42026
[13] Choi, J.; Srivastava, H. M., Mathieu series and associated sums involving the zeta functions, Comput. Math. Appl., 59, 2, 861-867 (2010) · Zbl 1189.33036
[14] Davis, P. J., Spirals: from Theodorus to Chaos. With contributions by Walter Gautschi and Arieh Iserles (1993), A K Peters, Ltd.: A K Peters, Ltd. Wellesley, MA · Zbl 0940.00002
[15] Delerue, P., Sur le calcul symbolic à \(n\) variables et fonctions hyperbesséliennes II, Ann. Soc. Sci. Bruxelle Ser., 1, 3, 229-274 (1953) · Zbl 0053.37201
[16] Dimovski, I. H.; Kiryakova, V. S., Generalized poisson transmutations and corresponding representations of hyper-bessel functions, C. R. Acad. Bulgare Sci., 39, 10, 29-32 (1986) · Zbl 0628.33006
[17] Diananda, P. H., Some inequalities related to an inequality of Mathieu, Math. Ann., 250, 95-98 (1980) · Zbl 0419.26008
[18] Din, M. U., Convexity of integral operators generated by some new inequalities of hyper-bessel functions, Commun. Korean Math. Soc., 34, 4, 1163-1173 (2019) · Zbl 1427.30019
[19] cić, B. D.s.; Pogány, T. K., On integral representation of bessel function of the first kind, J. Math. Anal. Appl., 308, 2, 775-780 (2005) · Zbl 1077.33005
[20] Srivastava, H. M.; Tomovski, v. Z.; Elezović, N., Integral representations and integral transforms of some families of Mathieu type series, Integr. Transforms Spec. Funct., 19, 7, 481-495 (2008) · Zbl 1155.44003
[21] Emersleben, O., Über die reihe \(\sum_{k = 1}^\infty \frac{k}{ ( k^2 + r^2 ) {}^2} \), Math. Ann., 125, 165-171 (1952) · Zbl 0049.32204
[22] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcendental Functions, I (1953), McGraw-Hill Book Company: McGraw-Hill Book Company New York, Toronto and London · Zbl 0051.30303
[23] No. 770, X+111pp · Zbl 1021.35033
[24] Fox, C., The asymptotic expansion of generalized hypergeometric functions, Proc. Lond. Math. Soc., S2-27, 1, 389-400 (1928) · JFM 54.0392.03
[25] Gautschi, W.; Milovanović, G. V., Gaussian quadrature involving einstein and fermi functions with an application to summation of series, Math. Comput., 44, 169, 177-190 (1985) · Zbl 0576.65011
[26] 1966-1967, No. 1-
[27] Calil, N. H., Reprèsentationes integrales de las funciones de bessel-clifford de tercer Orden, Rev. Acad. Ciencias. Zaragoza, 47, 51-60 (1992) · Zbl 0773.33006
[28] Hayek, N.; Suárez, V. H., On a class of functions connected with the hyper-bessel functions, Jñānābha, 23, 9-18 (1993) · Zbl 0887.33006
[29] Inglis, C. E., Two dimensional stresses in rectangular plates, Engineering, 112, 523-524 (1921)
[30] Khan, S.; Agrawal, B.; Pathan, M. A., Some connections between generalized Voigt functions with the different parameters, Appl. Math. Comput., 181, 57-64 (2006) · Zbl 1154.33301
[31] Kim, Y., Certain integration formulae for the generalized \(k\)-bessel functions and delerue hyper-bessel function, Commun. Korean Math. Soc., 34, 2, 523-532 (2019) · Zbl 1426.33006
[32] Kiryakova, V. S., Generalized fractional calculus and applications, Pitman Research Notes in. Math. Series No. 301 (1994), Longman Group UK Ltd. · Zbl 0882.26003
[33] Kiryakova, V., Obrechkoff integral transform and hyper-bessel operators via \(g\)-function and fractional calculus approach, Global Journal of Pure and Applied Mathematics. Proceedings of the 13th Symposium of the Tunisian Mathematical Society Held in Sousse, Tunisia - March 2005, 1, 321-341 (2005) · Zbl 1125.44003
[34] Kiryakova, V. S., The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Comput. Math. Appl., 59, 3, 1128-1141 (2010) · Zbl 1189.26007
[35] Kiryakova, V., The multi-index mittag-leffler functions as an important class of special functions of fractional calculus, Comput. Math. Appl., 59, 5, 1885-1895 (2010) · Zbl 1189.33034
[36] Kiryakova, V.; Hernandez-Suarez, V., Bessel-clifford third order differential operator and corresponding laplace type integral transform, Dissertationes Math., 340, 143-161 (1995) · Zbl 0839.44001
[37] (In Russian)
[38] Koialovich, B. M., On one partial differential equation of the fourth order, doctoral dissertation, izd. st. petersburg university, st petersburg XI, 1902 (in russian). (German review d. m. sintzow, b. m. kojalowicz, über eine partielle differentialgleichung vierter ordnung, Jbuch. Fortschr. Math., 33, 367-368 (1902) · JFM 33.0367.01
[39] Krasikov, I., Uniform bounds for bessel functions, J. Appl. Anal., 12, 1, 83-91 (2006) · Zbl 1108.33004
[40] Krasikov, I., Approximations for the bessel and airy functions with an explicit error term, LMS J. Comput. Math., 17, 1, 209-225 (2014) · Zbl 1294.41024
[41] Krasikov, I., On the bessel function \(j_\nu ( x )\) in the transition region, LMS J. Comput. Math., 17, 1, 273-281 (2014) · Zbl 1294.41025
[42] Lamé, G., Leçons sur la théorie mathématique de l’élasticité des corps solides (1852), Bachelier: Bachelier Paris
[43] L. Landau, Monotonicity and bounds on bessel functions. in proceedings of the symposium on mathematical physics and quantum field theory (berkeley, CA, 1999), 147-154, Electron. J. Differ. Equ. Conf., 4, Southwest Texas State Univ., San Marcos, TX,2000. · Zbl 0976.33002
[44] Lauricella, G., Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Matem., 7, 111-158 (1893) · JFM 25.0756.01
[45] Lauricella, G., Sull’Integrazione delle equazione dell’equilibrio dei corpi elastici isotropi, Rend. Reale. Accad. Lincei, 15, 426-432 (1906) · JFM 37.0826.02
[46] Lauricella, G., Sulla integrazione dell’equazione \(\delta^4 v = 0\), Rend. Reale. Accad. Lincei, 16, 373-383 (1907) · JFM 38.0802.01
[47] Lauricella, G., Sur l’intégration de l’équation relative à l’équilibre des plaques élastiques encastrées, Acta. Math., 32, 201-256 (1909) · JFM 40.0869.01
[48] E.C.J. Lommel, Die beugungserscheinungen einer kreisrunden öffnung und eines kreisrunden schirmchens theoretisch und experimentell bearbeitet, Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15229-328. 1884-1886. · JFM 16.0924.01
[49] E.C.J. Lommel, Die beugungserscheinungen geradlinig begrenzter schirme, Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15529-664. (1884-1886)
[50] Luke, Y. L., Mathematical Functions and their Approximations (1975), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers] New York-London · Zbl 0318.33001
[51] Mathieu, E., Mémoire sur des intégrations relatives a l’équilibre d’élasticité, J. Ecole Polytéch., 29, 163-206 (1880) · JFM 12.0731.02
[52] Mathieu, E., Mémoire sur l’équilibre d’élasticité d’un prisme rectangle, J. Ecole Polytéchn., 30, 173-196 (1881)
[53] Mathieu, E., Sur léquilibre d’élasticité d’un prisme rectangle, C. R. Acad. Sci. Paris, 90, 1272-1274 (1890) · JFM 12.0732.01
[54] Mathieu, E. L., Traité de Physique Mathématique, VI-VII: Théorie de l’élasticité des corps solides (1890), Gauthier-Villars: Gauthier-Villars Paris · JFM 22.0996.03
[55] Meleshko, V. V., Equilibrium of elastic rectangle: Mathieu-Inglis-Pickett solution revisited, J. Elast., 40, 207-238 (1995) · Zbl 0841.73011
[56] 1997 · Zbl 0902.73047
[57] Meleshko, V. V., Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mach. Rev., 56, 1, 33-85 (2003)
[58] Meleshko, V. V.; Gomilko, A. M., On the bending of clamped rectangular plates, Mech. Res. Commun., 21, 1, 19-24 (1994) · Zbl 0826.73032
[59] Meleshko, V. V.; Gomilko, A. M., Infinite systems for a biharmonic problem in a rectangle, Proc. R. Soc. Lond. Ser. A, 453, 1965, 2139-2160 (1997) · Zbl 0891.31003
[60] Milovanović, G. V.; Pogány, T. K., New integral forms of generalized mathieu series and related applications, Appl. Anal. Discret. Math., 7, 180-192 (2013) · Zbl 1299.33009
[61] Milton, K. A., The Casimir effect. Physical Manifestations of Zero-Point Energy (2001), World Scientific: World Scientific Singapore · Zbl 1025.81003
[62] Minakshisundaram, S.; Szász, O., On absolute convergence of multiple fourier series, Trans. Am. Math. Soc., 61, 1, 36-53 (1947) · Zbl 0054.03003
[63] Nagaya, K., Vibrations and dynamic response of membranes with arbitrary shape, Trans. ASME Ser. E J. Appl. Mech., 45, 1, 153-158 (1978) · Zbl 0385.73073
[64] Neuman, E., Inequalities and bounds for the incomplete gamma function, Results Math., 63, 1209-1214 (2013) · Zbl 1275.33005
[65] Olenko, A. Y., Upper bound on \(\sqrt{x} j_\nu ( x )\) and its applications, Integr. Transforms Spec. Funct., 17, 6, 455-467 (2006) · Zbl 1105.33007
[66] Paneva Konovska, J., A family of hyper-Bessel functions and convergent series in them, Frac. Calc. Appl. Anal., 17, 4, 1001-1015 (2014) · Zbl 1326.40001
[67] Paris, R. B., An inequality for the bessel function \(j_\nu ( \nu x )\), SIAM J. Math. Anal., 15, 1, 203-205 (1984)
[68] Pickett, G., Application of the fourier method to the solution of certain boundary problems in the theory of elasticity, Trans. ASME J. Appl. Mech., 11, 176-182 (1944) · Zbl 0060.41805
[69] Pogány, T. K., Integral representation of a series which includes the Mathieu \(\boldsymbol{a} \)-series, J. Math. Anal. Appl., 296, 309-313 (2004) · Zbl 1129.33012
[70] Pogány, T. K., Integral representation of Mathieu \(( \boldsymbol{a} , \boldsymbol{\lambda} )\)-series, Integr. Transforms Spec. Funct., 16, 8, 685-689 (2005) · Zbl 1101.26018
[71] Pogány, T. K., Further results on generalized Kapteyn-type expansions, Appl. Math. Lett., 22, 2, 192-196 (2009) · Zbl 1163.33301
[72] Pogány, T. K.; Parmar, R. K., On \(p\)-extended Mathieu series, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan., 22=534, 107-117 (2018) · Zbl 1405.33028
[73] Pogány, T. K.; Tomovski, v. Z., On Mathieu-type series whose terms contain a generalized hypergeometric function \({}_p f_q\) and meijer’s \(g\)-function, Math. Comput. Model., 47, 9-10, 952-969 (2008) · Zbl 1144.33301
[74] Pogány, T. K.; Srivastava, H. M.; Tomovski, v., Some families of Mathieu \(\mathbf{a} \)-series and alternating Mathieu \(\mathbf{a} \)-series, Appl. Math. Comput., 173, 1, 69-108 (2006) · Zbl 1097.33016
[75] Pogány, T. K.; Tomovski, v. Z.; skovski, D. L., Two-sided bounds for the complete butzer-Flocke-Hauss omega function, Mat. Vesnik, 65, 1, 104-121 (2013) · Zbl 1418.34037
[76] Gordon and Breach Science Publishers, New York · Zbl 0781.44002
[77] Ragab, F. M., Laplace transform of the bessel functions \(k_\mu [ x t^{\pm 1 / n} ]\) and \(j_\mu [ x t^{\pm 1 / n} ]\) where \(n = 1 , 2 , 3 , \cdots \), Ann. Mat. Pura Appl., 61, 4, 317-335 (1963) · Zbl 0114.03503
[78] Schröder, K., Das problem der eingespannten rechteckigen elastischen platte. i. die biharmonische randwertaufgabe für das rechteck, Math. Ann., 121, 247-326 (1949) · Zbl 0035.18703
[79] Siegel, K. M., An inequality involving bessel functions of argument nearly equal to their order, Proc. Am. Math. Soc., 4, 858-859 (1953) · Zbl 0052.06503
[80] (In Russian) · Zbl 0880.33002
[81] Srivastava, H. M.; Choi, J., Zeta and \(q\)-Zeta Functions and Associated Series and Integrals (2012), Elsevier Science, Publishers: Elsevier Science, Publishers Amsterdam, London and New York · Zbl 1239.33002
[82] Srivastava, H. M.; Daoust, M. C., Certain generalized neumann expansions associated with the kampé de fériet function, Nederl. Akad. Wetensch. Proc. Ser. A 72 Indag. Math., 31, 449-457 (1969) · Zbl 0185.29803
[83] Srivastava, H. M.; Daoust, M. C., A note on the convergence of Kampé de fériet double hypergeometric series, Math. Nachr., 53, 151-159 (1972) · Zbl 0221.33003
[84] Srivastava, H. M.; Exton, H., A generalization of the Weber-Schafheitlin integral, J. Reine Angew. Math., 309, 2, 1-6 (1979) · Zbl 0393.33002
[85] Srivastava, H. M.; Karlsson, P. W., Multiple Gaussian Hypergeometric Series (1985), Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York · Zbl 0552.33001
[86] Srivastava, H. M.; Pogány, T. K., Inequalities for a unified family of Voigt functions in several variables, Russ. J. Math. Phys., 14, 2, 194-200 (2007) · Zbl 1121.33008
[87] No. (7) · Zbl 1242.11065
[88] Tomovski, v., Integral representations of generalized Mathieu series via mittag-leffler type functions, Fract. Calc. Appl. Anal., 10, 2, 127-138 (2007) · Zbl 1141.33006
[89] Tomovski, v., New integral and series representations of the generalized Mathieu series, Appl. Anal. Discret. Math., 2, 2, 205-212 (2008) · Zbl 1274.33027
[90] Tomovski, v.; Pogány, T. K., Integral expressions for Mathieu-type power series and for the Butzer-Flocke-Hauss \(\omega \)-function, Fract. Calc. Appl. Anal., 14, 4, 623-634 (2011) · Zbl 1273.33016
[91] Watson, G. N., A Treatise on the Theory of Bessel Functions (1922), Cambridge University Press: Cambridge University Press London · JFM 48.0412.02
[92] Wright, E. M., The asymptotic expansion of the generalized hypergeometric function, J. Lond. Math. Soc., 10, 287-293 (1935) · Zbl 0013.02104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.