×

State-independent uncertainty relations and entanglement detection. (English) Zbl 1395.81045

Summary: The uncertainty relation is one of the key ingredients of quantum theory. Despite the great efforts devoted to this subject, most of the variance-based uncertainty relations are state-dependent and suffering from the triviality problem of zero lower bounds. Here we develop a method to get uncertainty relations with state-independent lower bounds. The method works by exploring the eigenvalues of a Hermitian matrix composed by Bloch vectors of incompatible observables and is applicable for both pure and mixed states and for arbitrary number of \(N\)-dimensional observables. The uncertainty relation for the incompatible observables can be explained by geometric relations related to the parallel postulate and the inequalities in Horn’s conjecture on Hermitian matrix sum. Practical entanglement criteria are also presented based on the derived uncertainty relations.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P16 Quantum state spaces, operational and probabilistic concepts
81P15 Quantum measurement theory, state operations, state preparations
81S05 Commutation relations and statistics as related to quantum mechanics (general)
62J10 Analysis of variance and covariance (ANOVA)
15B57 Hermitian, skew-Hermitian, and related matrices

References:

[1] Busch, P; Heinonen, T; Lahti, PJ, Heisenberg’s uncertainty principle, Phys. Rep., 452, 155, (2007) · doi:10.1016/j.physrep.2007.05.006
[2] Hofmann, HF; Takeuchi, S, Violation of local uncertainty relations as a signature of entanglement, Phys. Rev. A., 68, 032103, (2003) · doi:10.1103/PhysRevA.68.032103
[3] Gühne, O, Characterizing entanglement via uncertainty relations, Phys. Rev. Lett., 92, 117903, (2004) · doi:10.1103/PhysRevLett.92.117903
[4] Fuchs, CA; Peres, A, Quantum-state disturbance versus information gain: uncertainty relations for quantum information, Phys. Rev. A., 53, 2038, (1996) · doi:10.1103/PhysRevA.53.2038
[5] Heisenberg, W, Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Z. Phys., 43, 172, (1927) · JFM 53.0853.05 · doi:10.1007/BF01397280
[6] Kennard, EH, Zur quantenmechanik einfacher bewegungstypen, Zeitschrift für Physik, 44, 326, (1927) · JFM 53.0853.02 · doi:10.1007/BF01391200
[7] Robertson, HP, The uncertainty principle, Phys. Rev., 34, 163, (1929) · doi:10.1103/PhysRev.34.163
[8] Schrödinger, E, Situngsberichte der preussischen akademie der wissenschaften, Physikalisch-mathematische. Klasse., 14, 296, (1930)
[9] Maccone, L; Pati, AK, Stronger uncertainty relations for all incompatible observables, Phys. Rev. Lett., 113, 260401, (2014) · doi:10.1103/PhysRevLett.113.260401
[10] Song, Q-C; Qiao, C-F, Stronger Schrödinger-like uncertainty relations, Phys. Lett. A., 380, 2925, (2016) · doi:10.1016/j.physleta.2016.06.054
[11] Song, Q.-C., Qiao, C.-F.: Uncertainty equalities and uncertainty relation in weak measurement. arXiv:1505.02233 (2015)
[12] Chen, B; Fei, S-M, Sum uncertainty relations for arbitrary N incompatible observables, Sci. Rep., 5, 14238, (2015) · doi:10.1038/srep14238
[13] Bagchi, S; Pati, AK, Uncertainty relations for general unitary operators, Phys. Rev. A., 94, 042104, (2016) · doi:10.1103/PhysRevA.94.042104
[14] Xiao, Y-L; Jing, N-H; Li-Jost, X-Q; Fei, S-M, Weighted uncertainty relations, Sci. Rep., 6, 23201, (2016) · doi:10.1038/srep23201
[15] Chen, B; Cao, N-P; Fei, S-M; Long, G-L, Variance-based uncertainty relations for incompatible observables, Quantum Inf. Process., 15, 3909, (2016) · Zbl 1348.81054 · doi:10.1007/s11128-016-1365-1
[16] Song, Q-C; Li, J-L; Peng, G-X; Qiao, C-F, A stronger multi-observable uncertainty relation, Sci. Rep., 7, 44764, (2017) · doi:10.1038/srep44764
[17] Qin, H-H; Fei, S-M; Li-Jost, X-Q, Multi-observable uncertainty relations in product form of variances, Sci. Rep., 6, 31192, (2016) · doi:10.1038/srep31192
[18] Chen, B; Fei, S-M; Long, G-L, Sum uncertainty relations based on Wigner-Yanase skew information, Quantum Inf. Process., 15, 2639, (2016) · Zbl 1348.81055 · doi:10.1007/s11128-016-1274-3
[19] Mondal, D; Bagchi, S; Pati, AK, Tighter uncertainty and reverse uncertainty relations, Phys. Rev. A., 95, 052117, (2017) · doi:10.1103/PhysRevA.95.052117
[20] Zhang, J; Zhang, Y; Yu, C-S, Stronger uncertainty relations with improvable upper and lower bounds, Quantum Inf. Process., 16, 131, (2017) · Zbl 1373.81037 · doi:10.1007/s11128-017-1585-z
[21] Park, YM, Improvement of uncertainty relations for mixed states, J. Math. Phys., 46, 042109, (2005) · Zbl 1067.81006 · doi:10.1063/1.1876874
[22] Li, J-L; Qiao, C-F, Reformulating the quantum uncertainty relation, Sci. Rep., 5, 12708, (2015) · doi:10.1038/srep12708
[23] Abbott, AA; Alzieu, P; Hall, MJW; Branciard, C, Tight state-independent uncertainty relations for qubits, Mathematics, 4, 8, (2016) · Zbl 1336.81017 · doi:10.3390/math4010008
[24] Schwonnek, R; Dammeier, L; Werner, RF, State-independent uncertainty relations and entanglement detection in noisy systems, Phys. Rev. Lett., 119, 170404, (2017) · doi:10.1103/PhysRevLett.119.170404
[25] Dammeier, L; Schwonnek, R; Werner, RF, Uncertainty relations for angular momentum, New J. Phys., 17, 093046, (2015) · Zbl 1448.81035 · doi:10.1088/1367-2630/17/9/093046
[26] Horn, A, Eigenvalues of sums of Hermitian matrices, Pac. J. Math., 12, 225, (1962) · Zbl 0112.01501 · doi:10.2140/pjm.1962.12.225
[27] Fulton, W, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Am. Math. Soc., 37, 209, (2000) · Zbl 0994.15021 · doi:10.1090/S0273-0979-00-00865-X
[28] Hioe, FT; Eberly, JH, \(N\)-level coherence vector and higher conservation laws in quantum optics and quantum mechanics, Phys. Rev. Lett., 47, 838, (1981) · doi:10.1103/PhysRevLett.47.838
[29] Kimura, G, The Bloch vector for \(N\)-level systems, Phys. Lett. A, 314, 339, (2003) · Zbl 1052.81117 · doi:10.1016/S0375-9601(03)00941-1
[30] Byrd, MS; Khaneja, N, Characterization of the positivity of the density matrix in terms of the coherence vector representation, Phys. Rev. A., 68, 062322, (2003) · doi:10.1103/PhysRevA.68.062322
[31] Hofmann, HF, Uncertainty characteristics of generalized quantum measurements, Phys. Rev. A., 67, 022106, (2003) · doi:10.1103/PhysRevA.67.022106
[32] Li, J-L; Qiao, C-F, A necessary and sufficient criterion for the separability of quantum state, Sci. Rep., 8, 1442, (2018) · doi:10.1038/s41598-018-19709-z
[33] Vicente, JI, Separability criteria based on the Bloch representation of density matrices, Quantum Inf. Comput., 7, 624, (2007) · Zbl 1152.81835
[34] Rudolph, O, Further results on the cross norm criterion for separability, Quantum Inf. Process., 4, 219, (2005) · Zbl 1130.81016 · doi:10.1007/s11128-005-5664-1
[35] Chen, K; Wu, L-A, A matrix realignment method for recognizing entanglement, Quantum Inf. Comput., 3, 193, (2003) · Zbl 1152.81692
[36] Gühne, O; Hyllus, P; Gittsovich, O; Eiert, J, Covariance matrices and the separablity problem, Phys. Rev. Lett., 99, 130504, (2007) · Zbl 1228.81066 · doi:10.1103/PhysRevLett.99.130504
[37] Li, J.-L., Qiao, C.-F.: Separable decompositions of bipartite mixed states. Quantum Inf. Process. arXiv: 1708.05336 (2017)
[38] Jevtic, S; Pusey, M; Jennings, D; Rudolph, T, Quantum steering ellipsoids, Phys. Rev. Lett., 113, 020402, (2014) · doi:10.1103/PhysRevLett.113.020402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.