Skip to main content
Log in

Stronger uncertainty relations with improvable upper and lower bounds

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum superposition principle is used to establish improved upper and lower bounds for the Maccone–Pati uncertainty inequality, which is based on a “weighted-like” sum of the variances of observables. Our bounds include free parameters that not only guarantee nontrivial bounds but also effectively control the bounds’ tightness. Significantly, these free parameters depend on neither the state nor the observables. A feature of our method is that any nontrivial bound can always be improved. In addition, we generalize both bounds to uncertainty relations with multiple (three or more) observables, maintaining the uncertainty relations’ tightness. Examples are given to illustrate our improved bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Heisenberg, W.J.Z.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)

    Article  ADS  MATH  Google Scholar 

  2. Gühne, O.: Characterizing entanglement via uncertainty relation. Phys. Rev. Lett. 92, 117903 (2004)

    Article  ADS  Google Scholar 

  3. Hofmann, H.F., Takeuchi, S.: Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Fuchs, C.A., Peres, A.: Quantum-state disturbance versus information gain: uncertainty relations for quantum information. Phys. Rev. A 53, 2038 (1996)

    Article  ADS  Google Scholar 

  5. Wehner, S., Winter, A.: Entropic uncertainty relations—a survey. New J. Phys. 12, 025009 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, Y.: Variance-based uncertainty relation. Phys. Rev. A 86, 024101 (2012)

    Article  ADS  Google Scholar 

  8. Ozawa, M.: Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003)

    Article  ADS  Google Scholar 

  9. Rozema, L.A., et al.: Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett. 109, 100404 (2012)

    Article  ADS  Google Scholar 

  10. Erhart, J., et al.: Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin measurements. Nat. Phys. 8, 185 (2012)

    Article  Google Scholar 

  11. Branciard, C.: Deriving tight error-trade-off relations for approximate joint measurements of incompatible quantum observables. Phys. Rev. A 89, 022124 (2014)

    Article  ADS  Google Scholar 

  12. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bialynicki-Birula, I.: Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 74, 052101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bialynicki-Birula, I., Rudnicki, L.: Statistical Complexity. Springer, New York (2011)

    Google Scholar 

  17. Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210405 (2012)

    Article  ADS  Google Scholar 

  18. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)

    Article  ADS  Google Scholar 

  19. Kaniewski, J., Tomamichel, M., Wehner, S.: Entropic uncertainty from effective anticommutators. Phys. Rev. A 90, 012332 (2014)

    Article  ADS  Google Scholar 

  20. Abbott, A.A., Alzieu, P.-L., Hall, M.J.W., Branciard, C.: Tight state-independent uncertainty relations for qubits. Mathematics 4, 8 (2016)

    Article  MATH  Google Scholar 

  21. Li, J.-L., Qiao, C.-F.: Reformulating the quantum uncertainty relation. Sci. Rep. 5, 12708 (2015)

    Article  ADS  Google Scholar 

  22. Berta, M., et al.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  23. Zhang, J., Zhang, Y., Yu, C.S.: Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep. 5, 11701 (2015)

    Article  ADS  Google Scholar 

  24. Srinivas, M.D.: Optimal entropic uncertainty relation for successive measurements in quantum information theory. Paramana J. Phys. 60, 1137 (2003)

    Article  ADS  Google Scholar 

  25. Baek, K., Farrow, T., Son, W.: Optimized entropic uncertainty for successive projective measurements. Phys. Rev. A. 89, 032108 (2014)

    Article  ADS  Google Scholar 

  26. Zhang, J., Zhang, Y., Yu, C.S.: Rényi entropy uncertainty relation for successive projective measurements. Quantum Inf. Process. 14, 2239 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Luo, S.L.: Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  28. Luo, S.L.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)

    Article  ADS  Google Scholar 

  29. Luo, S.L.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Li, D., Li, X., Wang, F., Huang, H., Li, X., Kwek, L.C.: Uncertainty relation of mixed states by means of Wigner–Yanase–Dyson information. Phys. Rev. A 79, 052106 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. Busch, P., Lahti, P., Werner, R.F.: Proof of Heisenberg’s error-disturbance relation. Phys. Rev. Lett. 111, 160405 (2013)

    Article  ADS  Google Scholar 

  32. Buscemi, F., Hall, M.J.W., Ozawa, M., Wilde, M.M.: Noise and disturbance in quantum measurements: an information-theoretic approach. Phys. Rev. Lett. 112, 050401 (2014)

    Article  ADS  Google Scholar 

  33. Maccone, L.: Entropic information-disturbance tradeoff. Europhys. Lett. 77, 40002 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Busch, P., Lahti, P., Werner, R.F.: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 86, 1261 (2014)

    Article  ADS  Google Scholar 

  35. Liu, S., Mu, L.-Z., Fan, H.: Entropic uncertainty relations for multiple measurements. Phys. Rev. A 91, 042133 (2015)

    Article  ADS  Google Scholar 

  36. Hu, M.L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88, 014105 (2013)

    Article  ADS  Google Scholar 

  37. Hu, M.L., Fan, H.: Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A 86, 032338 (2012)

    Article  ADS  Google Scholar 

  38. Peres, A.: Quantum Theory: Concepts and Mehtods. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  39. Maccone, L., Pati, A.K.: Stronger uncertainty relation for all incompatible observables. Phys. Rev. Lett. 113, 260401 (2014)

    Article  ADS  Google Scholar 

  40. Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326 (1927)

    Article  ADS  MATH  Google Scholar 

  41. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  42. Pati, A.K., Sahu, P.K.: Sum uncertainty relation in quantum theory. Phys. Lett. A 367, 177 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Chen, B., Fei, S.M.: Sum uncertainty relations for arbitrary N incompatible observables. Sci. Rep. 5, 14238 (2015)

    Article  ADS  Google Scholar 

  44. Xiao, Y.L., Jing, N.H., Li-Jost, X., Fei, S.M.: Weighted uncertainty relations. Sci. Rep. 6, 23201 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, under Grant No. 11375036, the Xinghai Scholar Cultivation Plan and the Fundamental Research Funds for the Central Universities under Grant No. DUT15LK35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-shui Yu.

Appendix

Appendix

Lower bound of Eq. (3) in qubit system. First, we emphasize that the nontrivial bound does not only mean that a vanishing bound is given once the sum of the variances does not vanish. It will also be trivial if the lower bound is equal to the sum of variance, because in this case we does not need to look for bound. Of course, this should be distinguished from the case when the state happens to be the eigenstate of one observable. With this in mind, let us study \(\mathcal {L}_{1}\) and \(\mathcal {L}_{2}\) in Eq. (3).

Since the qubit system is considered for Eq. (4), there exists a unique \(\vert \psi ^{\perp }\rangle \) orthogonal to \(\left| \psi \right\rangle \) neglecting a global phase. So, we have \(\vert \psi ^{\perp }\rangle \langle \psi ^{\perp }\vert =1-\left| \psi \right\rangle \left\langle \psi \right| \). Substituting this relation into Eq. (4), one will have

$$\begin{aligned} \mathcal {L}_{1}= & {} \pm i\langle [X,Y]\rangle +|\langle \psi |X\pm iY|\psi ^{\perp }\rangle |^{2} \nonumber \\= & {} \pm i\langle [X,Y]\rangle +\langle \psi |\left( X\pm iY\right) \left( X\mp iY\right) |\psi \rangle \nonumber \\&-\langle \psi |\left( X\pm iY\right) \left| \psi \right\rangle \left\langle \psi \right| \left( X\mp iY\right) |\psi \rangle \end{aligned}$$
(63)
$$\begin{aligned}= & {} \pm i\langle [X,Y]\rangle +\langle X^{2}\rangle +\langle Y^{2}\rangle \mp i\left\langle [X,Y]\right\rangle -\left\langle X\right\rangle ^{2}-\left\langle Y\right\rangle ^{2} \nonumber \\= & {} \Delta X^{2} +\Delta Y^{2}. \end{aligned}$$
(64)

In this sense, the maximum operation in Eq. (3) directly ignores \(\mathcal {L}_{2}\) and becomes a trivial “bound”. In this case, if one could give up \(\mathcal {L}_{1}\) and turn to \(\mathcal {L}_{2}\), this is also of no help, because \(\mathcal {L}_{2}\) is trivial once \(\left| \psi \right\rangle \) happens to be the eigenstate of \(X+Y\), but it is not the eigenstate of either X or Y. So we think the bound given in Eq. (3) is trivial in qubit system. One could argue that the equality could not be a bad thing because it provides a unified form of Eq. (4) for any qudit state. However, this is only a trivial substitution for qubit system. Considering our Eqs. (63) and (64), one will find that they form an equality for any qudit state \(\left| \psi \right\rangle \). In particular, all the terms in the left-hand side of Eq. (63) are the average values of observables such as \(i\langle [X,Y]\rangle \), \(\langle \psi |\left( X\pm iY\right) \left( X\mp iY\right) |\psi \rangle \), \(\left\langle \psi \right| X\left| \psi \right\rangle \) and \(\left\langle \psi \right| Y\left| \psi \right\rangle \). However, this is obviously an rewriting of Eq. (64) and deviates the original purpose of uncertainty relation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Y. & Yu, Cs. Stronger uncertainty relations with improvable upper and lower bounds. Quantum Inf Process 16, 131 (2017). https://doi.org/10.1007/s11128-017-1585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1585-z

Keywords

Navigation