×

Newell-Littlewood numbers. II: extended Horn inequalities. (English) Zbl 1504.05298

Summary: The Newell-Littlewood numbers \(N_{\mu ,\nu ,\lambda}\) are tensor product multiplicities of Weyl modules for classical Lie groups, in the stable limit. For which triples of partitions \((\mu ,\nu ,\lambda)\) does \(N_{\mu ,\nu ,\lambda}>0\) hold? The Littlewood-Richardson coefficient case is solved by the Horn inequalities (in work of A. A. Klyachko [Sel. Math., New Ser. 4, No. 3, 419–445 (1998; Zbl 0915.14010)] and A. Knutson and T. Tao [J. Am. Math. Soc. 12, No. 4, 1055–1090 (1999; Zbl 0944.05097)]). We extend these celebrated linear inequalities to a much larger family, suggesting a general solution.
For Part I, see [ibid. 374, No. 9, 6331–6366 (2021; Zbl 1536.05471)].

MSC:

05E10 Combinatorial aspects of representation theory
22E46 Semisimple Lie groups and their representations
15A18 Eigenvalues, singular values, and eigenvectors

References:

[1] Belkale, Prakash, Local systems on \(\mathbb{P}^1-S\) for \(S\) a finite set, Compositio Math., 129, 1, 67-86 (2001) · Zbl 1042.14031 · doi:10.1023/A:1013195625868
[2] Belkale, Prakash; Kumar, Shrawan, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math., 166, 1, 185-228 (2006) · Zbl 1106.14037 · doi:10.1007/s00222-006-0516-x
[3] Bhatia, Rajendra, Linear algebra to quantum cohomology: the story of Alfred Horn’s inequalities, Amer. Math. Monthly, 108, 4, 289-318 (2001) · Zbl 1016.15014 · doi:10.2307/2695237
[4] Briand, Emmanuel; Orellana, Rosa; Rosas, Mercedes, Rectangular symmetries for coefficients of symmetric functions, Electron. J. Combin., 22, 3, 18 p. pp. (2015) · Zbl 1327.05332 · doi:10.37236/4808
[5] Fulton, William, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.), 37, 3, 209-249 (2000) · Zbl 0994.15021 · doi:10.1090/S0273-0979-00-00865-X
[6] Gao, Shiliang; Orelowitz, Gidon; Ressayre, Nicolas; Yong, Alexander, Newell-Littlewood numbers III: eigencones and GIT-semigroups (2021)
[7] Gao, Shiliang; Orelowitz, Gidon; Yong, Alexander, Newell-Littlewood numbers, Trans. Amer. Math. Soc., 374, 9, 6331-6366 (2021) · Zbl 1536.05471 · doi:10.1090/tran/8375
[8] Hahn, Heekyoung, On classical groups detected by the triple tensor product and the Littlewood-Richardson semigroup, Res. Number Theory, 2, 12 p. pp. (2016) · Zbl 1421.11048 · doi:10.1007/s40993-016-0049-3
[9] Horn, Alfred, Eigenvalues of sums of Hermitian matrices, Pacific J. Math., 12, 225-241 (1962) · Zbl 0112.01501 · doi:10.2140/pjm.1962.12.225
[10] Klyachko, Alexander A., Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.), 4, 3, 419-445 (1998) · Zbl 0915.14010 · doi:10.1007/s000290050037
[11] Knutson, Allen; Tao, Terence, The honeycomb model of \(\text{GL}_n(\mathbb{C})\) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., 12, 4, 1055-1090 (1999) · Zbl 0944.05097 · doi:10.1090/S0894-0347-99-00299-4
[12] Knutson, Allen; Tao, Terence; Woodward, Christopher, The honeycomb model of \(\text{GL}_n(\mathbb{C})\) tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc., 17, 1, 19-48 (2004) · Zbl 1043.05111 · doi:10.1090/S0894-0347-03-00441-7
[13] Kumar, Shrawan, A survey of the additive eigenvalue problem. With an appendix by M. Kapovich, Transform. Groups, 19, 4, 1051-1148 (2014) · Zbl 1354.14074 · doi:10.1007/s00031-014-9287-4
[14] Littlewood, Dudley E., Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Canadian J. Math., 10, 17-32 (1958) · Zbl 0079.03604 · doi:10.4153/CJM-1958-002-7
[15] Newell, Martin J., Modification rules for the orthogonal and symplectic groups, Proc. Roy. Irish Acad. Sect. A, 54, 153-163 (1951) · Zbl 0044.25802
[16] Ressayre, Nicolas, Horn inequalities for nonzero Kronecker coefficients, Adv. Math., 356, 21 p. pp. (2019) · Zbl 1421.05016 · doi:10.1016/j.aim.2019.106809
[17] Zelevinsky, Andrei, New perspectives in algebraic combinatorics (Berkeley, CA, 1996-97), 38, Littlewood-Richardson semigroups, 337-345 (1999), Cambridge Univ. Press: Cambridge Univ. Press, Cambridge · Zbl 0935.05094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.