×

Portfolio optimization with stochastic volatilities: a backward approach. (English) Zbl 1244.91086

The authors consider a financial market where the risky assets are jump diffusion processes and where the utility function of an agent is a power utility function \(U(x) = \frac{x^{\delta}}{\delta}\), \(x \in \mathbb{R}_+\), for some \(\delta \in (0,1)\). They impose constraints on the portfolio by prohibiting borrowing and short selling and are interested in maximizing the expected utility \(v(t,x,\lambda)\) from the terminal wealth.
They transform the corresponding Hamilton-Jacobi-Bellman equation into the semi-linear PDE \[ - \frac{\partial \phi}{\partial t} - \frac{1}{2} \Delta \phi + H(\lambda,D\phi) = 0, \quad (t,\lambda) \in [0,T) \times \mathbb{R}^d \] with terminal condition \[ \phi(T,\lambda) = 0, \quad \lambda \in \mathbb{R}^d, \] where \(H\) denotes the Hamiltonian, and they prove the existence of a smooth solution of this equation.
Afterwards, the authors derive a backward stochastic differential equation which is related to the semi-linear PDE and which turns out to be Lipschitz, and they present a numerical scheme in order to simulate this BSDE. Some numerical studies illustrate their results.

MSC:

91G10 Portfolio theory
60H30 Applications of stochastic analysis (to PDEs, etc.)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
93E20 Optimal stochastic control
Full Text: DOI

References:

[1] DOI: 10.2307/2975974 · doi:10.2307/2975974
[2] DOI: 10.1016/0022-0531(71)90038-X · Zbl 1011.91502 · doi:10.1016/0022-0531(71)90038-X
[3] DOI: 10.1007/PL00000040 · Zbl 0977.93081 · doi:10.1007/PL00000040
[4] DOI: 10.1007/s00245-002-0735-5 · Zbl 1014.91038 · doi:10.1007/s00245-002-0735-5
[5] DOI: 10.1007/s00245-007-0896-3 · Zbl 1134.60046 · doi:10.1007/s00245-007-0896-3
[6] DOI: 10.1111/1467-9965.00022 · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[7] DOI: 10.1111/1467-9965.00093 · doi:10.1111/1467-9965.00093
[8] DOI: 10.1214/105051606000000475 · Zbl 1132.91457 · doi:10.1214/105051606000000475
[9] DOI: 10.1214/105051605000000188 · Zbl 1083.60048 · doi:10.1214/105051605000000188
[10] DOI: 10.1214/aop/1019160253 · Zbl 1044.60045 · doi:10.1214/aop/1019160253
[11] Elkaroui N., Paris-Princeton Lecture Notes on Mathematical Finance (2011)
[12] DOI: 10.1007/BF01192258 · Zbl 0794.60056 · doi:10.1007/BF01192258
[13] DOI: 10.3150/bj/1072215199 · Zbl 1042.60021 · doi:10.3150/bj/1072215199
[14] DOI: 10.1214/aoap/1075828058 · Zbl 1056.60067 · doi:10.1214/aoap/1075828058
[15] DOI: 10.1016/j.spa.2004.01.001 · Zbl 1071.60059 · doi:10.1016/j.spa.2004.01.001
[16] DOI: 10.3150/bj/1161614951 · Zbl 1136.60351 · doi:10.3150/bj/1161614951
[17] Lipster R., Statistics of Random Process (1977) · Zbl 0938.60024
[18] DOI: 10.1007/978-1-4612-6380-7 · doi:10.1007/978-1-4612-6380-7
[19] Fleming W.H., Controlled Markov Processes and Viscosity Solutions (1993) · Zbl 0773.60070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.