×

Hand-waving and interpretive dance: an introductory course on tensor networks. (English) Zbl 1371.81062

Summary: The curse of dimensionality associated with the Hilbert space of spin systems provides a significant obstruction to the study of condensed matter systems. Tensor networks have proven an important tool in attempting to overcome this difficulty in both the numerical and analytic regimes.{ }These notes form the basis for a seven lecture course, introducing the basics of a range of common tensor networks and algorithms. In particular, we cover: introductory tensor network notation, applications to quantum information, basic properties of matrix product states, a classification of quantum phases using tensor networks, algorithms for finding matrix product states, basic properties of projected entangled pair states, and multiscale entanglement renormalisation ansatz states.{ }The lectures are intended to be generally accessible, although the relevance of many of the examples may be lost on students without a background in many-body physics/quantum information. For each lecture, several problems are given, with worked solutions in an ancillary file.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
81V70 Many-body theory; quantum Hall effect
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
81-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to quantum theory

References:

[1] Eckart C and Young G 1936 The approximation of one matrix by another of lower rank Psychometrika1 211-8 · JFM 62.1075.02 · doi:10.1007/BF02288367
[2] Mirsky L 1960 Symmetric gauge functions and unitarily invariant norms Q. J. Math.11 50-9 · Zbl 0105.01101 · doi:10.1093/qmath/11.1.50
[3] Pfeifer R N C, Haegeman J and Verstraete F 2014 Faster identification of optimal contraction sequences for tensor networks Phys. Rev. E 90 033315 · doi:10.1103/PhysRevE.90.033315
[4] Pfeifer R N C, Evenbly G, Singh S and Vidal G 2014 NCON: A tensor network contractor for MATLAB arXiv:1402.0939
[5] Evenbly G and Pfeifer R N C 2014 Improving the efficiency of variational tensor network algorithms Phys. Rev. B 89 245118 · doi:10.1103/PhysRevB.89.245118
[6] Arad I and Landau Z 2010 Quantum computation and the evaluation of tensor networks SIAM J. Comput.39 3089-121 · Zbl 1209.68261 · doi:10.1137/080739379
[7] Chi-Chung L, Sadayappan P and Wenger R 1997 On optimizing a class of multi-dimensional loops with reduction for parallel execution Parallel Process. Lett.07 157-68 · doi:10.1142/S0129626497000176
[8] Garey M R, Johnson D S and Stockmeyer L 1974 Some simplified NP-complete problems Proc. of the 6th Annual ACM Symp. on Theory of Computing (New York: ACM) pp 47-63
[9] Dyer M, Goldberg L A, Greenhill C and Jerrum M 2004 The relative complexity of approximate counting problems Algorithmica38 471-500 · Zbl 1138.68424 · doi:10.1007/s00453-003-1073-y
[10] Biamonte J D, Morton J and Turner J 2015 Tensor network contractions for #SAT J. Stat. Phys.160 1389-404 · Zbl 1341.68053 · doi:10.1007/s10955-015-1276-z
[11] Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information 10th Anniversary edn (Cambridge: Cambridge University Press)
[12] Mermin N D 2007 Quantum Computer Science: an Introduction (Cambridge: Cambridge University Press) · Zbl 1148.81001 · doi:10.1017/CBO9780511813870
[13] Wilde M M 2013 Quantum Information Theory (Cambridge: Cambridge University Press) · Zbl 1296.81001 · doi:10.1017/CBO9781139525343
[14] Preskill J 2013 Quantum computation www.theory.caltech.edu/people/preskill/ph229/
[15] Watrous J 2013 Theory of quantum information and introduction to quantum computing https://cs.uwaterloo.ca/ watrous/LectureNotes.html
[16] Wood C J, Biamonte J D and Cory D G 2011 Tensor networks and graphical calculus for open quantum systems Quantum Inf. Comput.15 0759
[17] Verstraete F and Cirac J 2006 Matrix product states represent ground states faithfully Phys. Rev. B 73 94423 · doi:10.1103/PhysRevB.73.094423
[18] Perez-Garcia D, Verstraete F, Wolf M M and Cirac J I 2007 Matrix product state representations Quantum Inf. Comput.7 401-30 · Zbl 1152.81795
[19] Hastings M B 2007 An area law for one-dimensional quantum systems J. Stat. Mech. P08024 · Zbl 1456.82046
[20] Chen X, Gu Z C and Wen X G 2010 Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order Phys. Rev. B 82 155138 · doi:10.1103/PhysRevB.82.155138
[21] Schollwöck U 2011 The density-matrix renormalization group in the age of matrix product states Ann. Phys.326 96-192 · Zbl 1213.81178 · doi:10.1016/j.aop.2010.09.012
[22] Orús R 2014 A practical introduction to tensor networks: Matrix product states and projected entangled pair states Ann. Phys.349 117-58 · Zbl 1343.81003 · doi:10.1016/j.aop.2014.06.013
[23] Verstraete F, Murg V and Cirac J 2008 Matrix product states, projected entangled pair states and variational renormalization group methods for quantum spin systems Adv. Phys.57 143-224 · doi:10.1080/14789940801912366
[24] Schuch N, Pérez-García D and Cirac I 2011 Classifying quantum phases using matrix product states and projected entangled pair states Phys. Rev. B 84 165139 · doi:10.1103/PhysRevB.84.165139
[25] Affleck I, Kennedy T, Lieb E H and Tasaki H 1987 Rigorous results on valence-bond ground states in antiferromagnets Phys. Rev. Lett.59 799 · doi:10.1103/PhysRevLett.59.799
[26] Verstraete F, Cirac J, Latorre J, Rico E and Wolf M 2005 Renormalization-group transformations on quantum states Phys. Rev. Lett.94 140601 · doi:10.1103/PhysRevLett.94.140601
[27] McCulloch I P 2007 From density-matrix renormalization group to matrix product states J. Stat. Mech. P10014 · doi:10.1088/1742-5468/2007/10/P10014
[28] Pirvu B, Murg V, Cirac J I and Verstraete F 2010 Matrix product operator representations New J. Phys.12 025012 · Zbl 1360.81116 · doi:10.1088/1367-2630/12/2/025012
[29] Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press) · Zbl 1233.82003 · doi:10.1017/CBO9780511973765
[30] Chen X, Gu Z C and Wen X G 2011 Classification of gapped symmetric phases in 1D spin systems Phys. Rev. B 83 035107 · doi:10.1103/PhysRevB.83.035107
[31] Huang Y and Chen X 2015 Quantum circuit complexity of one-dimensional topological phases Phys. Rev. B 91 195143 · doi:10.1103/PhysRevB.91.195143
[32] Chen X, Gu Z C, Liu Z X and Wen X G 2011 Symmetry protected topological orders and the group cohomology of their symmetry group Phys. Rev. B 87 155114 · doi:10.1103/PhysRevB.87.155114
[33] 2015 Can a symmetry-preserving unitary transformation that goes from a trivial SPT to a non-trivial SPT be local? Stack Exchange—http://physics.vexchange.com/questions/184570/can-a-symmetry-preserving-unitary-transformation-that-goes-from-a-trivial-spt-to
[34] Pérez-García D, Wolf M M, Sanz M, Verstraete F and Cirac J 2008 String Order and Symmetries in Quantum Spin Lattices Phys. Rev. Lett.100 167202 · doi:10.1103/PhysRevLett.100.167202
[35] Schuch N, Cirac I and Pérez-García D 2010 PEPS as ground states: Degeneracy and topology Ann. Phys.325 2153-92 · Zbl 1198.81063 · doi:10.1016/j.aop.2010.05.008
[36] Kitaev A Y, Shen A H and Vyalyi M N 2002 Classical and Quantum Computation(Graduate Studies in Mathematics) (Providence, RI: American Mathematical Society) · Zbl 1022.68001 · doi:10.1090/gsm/047
[37] Arad I, Landau Z and Vazirani U 2012 Improved one-dimensional area law for frustration-free systems Phys. Rev. B 85 195145 · doi:10.1103/PhysRevB.85.195145
[38] Arad I, Kitaev A, Landau Z and Vazirani U 2013 An area law and sub-exponential algorithm for 1D systems arXiv:1301.1162
[39] Huang Y 2014 Area law in one dimension: Renyi entropy and degenerate ground states arXiv:1403.0327
[40] Arad I, Landau Z, Vazirani U and Vidick T 2016 Rigorous RG algorithms and area laws for low energy eigenstates in 1D arXiv:1602.08828
[41] Eisert J, Cramer M and Plenio M B 2010 Colloquium: Area laws for the entanglement entropy Rev. Mod. Phys.82 277-306 · Zbl 1205.81035 · doi:10.1103/RevModPhys.82.277
[42] Landau Z, Vazirani U and Vidick T 2013 A polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians Nat. Phys.11 566-9 (Proc. of the 5th Conf. on Innovations in Theoretical Computer Science) · doi:10.1038/nphys3345
[43] Chubb C T and Flammia S T 2016 Computing the degenerate ground space of gapped spin chains in polynomial time Chic. J. Theor. Comput.9 · Zbl 1369.68211 · doi:10.4086/cjtcs.2016.009
[44] Huang Y 2014 A polynomial-time algorithm for approximating the ground state of 1D gapped Hamiltonians arXiv:1406.6355
[45] Huang Y 2015 Computing energy density in one dimension arXiv:1505.00772
[46] Tagliacozzo L, de Oliveira T R, Iblisdir S and Latorre J I 2008 Scaling of entanglement support for matrix product states Phys. Rev. B 78 024410 · doi:10.1103/PhysRevB.78.024410
[47] Pollmann F, Mukerjee S, Turner A and Moore J E 2008 Theory of finite-entanglement scaling at one-dimensional quantum critical points Phys. Rev. Lett.102 255701 · doi:10.1103/PhysRevLett.102.255701
[48] Stojevic V, Haegeman J, McCulloch I P, Tagliacozzo L and Verstraete F 2015 Conformal data from finite entanglement scaling Phys. Rev. B 91 035120 · doi:10.1103/PhysRevB.91.035120
[49] Daley A J, Kollath C, Schollwoeck U and Vidal G 2004 Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces J. Stat. Mech. P04005 · Zbl 1075.82015
[50] White S R and Feiguin A E 2004 Real-time evolution using the density matrix renormalization group Phys. Rev. Lett.93 076401 · doi:10.1103/PhysRevLett.93.076401
[51] Verstraete F, García-Ripoll J J and Cirac J I 2004 Matrix product density operators: simulation of finite-T and dissipative systems Phys. Rev. Lett.93 207204 · doi:10.1103/PhysRevLett.93.207204
[52] Bridgeman J C, Flammia S T and Poulin D 2016 Detecting topological order with ribbon operators Phys. Rev. B 94 205123 · doi:10.1103/PhysRevB.94.205123
[53] White S R 1992 Density matrix formulation for quantum renormalization groups Phys. Rev. Lett.69 2863-6 · doi:10.1103/PhysRevLett.69.2863
[54] Schollwöck U 2005 The density-matrix renormalization group Rev. Mod. Phys.77 259-315 · Zbl 1205.82073 · doi:10.1103/RevModPhys.77.259
[55] White S R 2005 Density matrix renormalization group algorithms with a single center site Phys. Rev. B 72 180403 · doi:10.1103/PhysRevB.72.180403
[56] Dolgov S V and Savostyanov D V 2014 Alternating minimal energy methods for linear systems in higher dimensions SIAM J. Sci. Comput.36 A2248-71 · Zbl 1307.65035 · doi:10.1137/140953289
[57] Dolgov S V and Savostyanov D V 2013 One-site density matrix renormalization group and alternating minimum energy algorithm Numerical Mathematics and Advanced Applications - ENUMATH 2013 pp 335-43 · Zbl 1328.65087 · doi:10.1007/978-3-319-10705-9_33
[58] Vidal G 2003 Efficient classical simulation of slightly entangled quantum computations Phys. Rev. Lett.91 147902 · doi:10.1103/PhysRevLett.91.147902
[59] Vidal G 2004 Efficient simulation of one-dimensional quantum many-body systems Phys. Rev. Lett.93 40502 · doi:10.1103/PhysRevLett.93.040502
[60] Hatano N and Suzuki M 2005 Finding exponential product formulas of higher orders Quantum Annealing and Other Optimization Methods(Lecture Notes in Physics vol 679) pp 37-68 · doi:10.1007/11526216_2
[61] ITensor 2005 http://itensor.org/
[62] evoMPS 2005 http://amilsted.github.io/evoMPS/
[63] Matrix Product Toolkit 2005 http://physics.uq.edu.au/people/ianmcc/mptoolkit/index.php
[64] uni10 2005 http://uni10.org/
[65] Tensor Operations 2005 https://github.com/Jutho/TensorOperations.jl
[66] Izmailian N S and Hu C -K 2009 Boundary conditions and amplitude ratios for finite-size corrections of a one-dimensional quantum spin model Nucl. Phys. B 808 613 · Zbl 1192.82022 · doi:10.1016/j.nuclphysb.2008.09.009
[67] Verstraete F, Wolf M M, Perez-Garcia D and Cirac J I 2006 Criticality, the area law and the computational power of projected entangled pair states Phys. Rev. Lett.96 220601 · Zbl 1228.81096 · doi:10.1103/PhysRevLett.96.220601
[68] Schuch N, Poilblanc D, Cirac J I and Pérez-García D 2012 Resonating valence bond states in the PEPS formalism Phys. Rev. B 86 115108 · doi:10.1103/PhysRevB.86.115108
[69] Kitaev A Y 2003 Fault-tolerant quantum computation by anyons Ann. Phys.303 2-30 · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[70] Verstraete F and Cirac J I 2004 Valence-bond states for quantum computation Phys. Rev. A 70 060302 · doi:10.1103/PhysRevA.70.060302
[71] Schuch N, Wolf M, Verstraete F and Cirac J 2008 Entropy Scaling and Simulability by Matrix Product States Phys. Rev. Lett.100 30504 · Zbl 1228.82014 · doi:10.1103/PhysRevLett.100.030504
[72] Schuch N, Wolf M, Verstraete F and Cirac J 2008 The computational complexity of PEPS Phys. Rev. Lett.98 140506 · Zbl 1228.81134 · doi:10.1103/PhysRevLett.98.140506
[73] Lubasch M, Cirac J and Bañuls M-C 2014 Algorithms for finite projected entangled pair states Phys. Rev. B 90 064425 · doi:10.1103/PhysRevB.90.064425
[74] Jordan J, Orus R, Vidal G, Verstraete F and Cirac J 2008 Classical simulation of infinite-size quantum lattice systems in two spatial dimensions Phys. Rev. Lett.101 250602 · doi:10.1103/PhysRevLett.101.250602
[75] Phien H N, Bengua J A, Tuan H D, Corboz P and Orus R 2015 The iPEPS algorithm, improved: fast full update and gauge fixing Phys. Rev. B 92 035142 · doi:10.1103/PhysRevB.92.035142
[76] Pérez-García D, Sanz M, González-Guillén C E, Wolf M M and Cirac J I 2010 Characterizing symmetries in a projected entangled pair state New J. Phys.12 025010 · Zbl 1360.81074 · doi:10.1088/1367-2630/12/2/025010
[77] Vidal G 2007 Entanglement renormalization Phys. Rev. Lett.99 220405 · doi:10.1103/PhysRevLett.99.220405
[78] Vidal G 2008 Class of quantum many-body states that can be efficiently simulated Phys. Rev. Lett.101 110501 · doi:10.1103/PhysRevLett.101.110501
[79] Pfeifer R N C, Evenbly G and Vidal G 2009 Entanglement renormalization, scale invariance and quantum criticality Phys. Rev. A 79 040301 · doi:10.1103/PhysRevA.79.040301
[80] Evenbly G and Vidal G 2009 Algorithms for entanglement renormalization Phys. Rev. B 79 149903 · Zbl 1310.82021 · doi:10.1103/PhysRevB.79.149903
[81] Vidal G 2011 Entanglement renormalization: an introduction Understanding Quantum Phase Transitions ed L Carr (Boca Raton, FL: CRC Press) ch 5 pp 115-38 · Zbl 1237.82024
[82] Evenbly G and Vidal G 2010 Entanglement renormalization in fermionic systems Phys. Rev. B 81 235102 · doi:10.1103/PhysRevB.81.235102
[83] Cincio L, Dziarmaga J and Rams M M 2008 Multi-scale entanglement renormalization Ansatz in two dimensions: quantum Ising model Phys. Rev. Lett.100 240603 · doi:10.1103/PhysRevLett.100.240603
[84] Aguado M and Vidal G 2008 Entanglement renormalization and topological order Phys. Rev. Lett.100 070404 · doi:10.1103/PhysRevLett.100.070404
[85] Evenbly G and Vidal G 2009 Entanglement renormalization in two spatial dimensions Phys. Rev. Lett.102 180406 · doi:10.1103/PhysRevLett.102.180406
[86] Evenbly G and Vidal G 2013 Quantum criticality with the multi-scale entanglement renormalization ansatz Strongly Correlated Systems. Numerical Methods ed A Avella and F Mancini (Berlin: Springer) ch 4 · doi:10.1007/978-3-642-35106-8_4
[87] Di Francesco P, Mathieu P and Sénéchal D 1997 Conformal Field Theory (Berlin: Springer) · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[88] Christe P and Henkel M 1993 Introduction to Conformal Invariance and Its Applications to Critical Phenomena (Berlin: Springer) · Zbl 0790.60095
[89] Maldacena J M 1998 The Large N Limit of Superconformal Field Theories and Supergravity Int. J. Theor. Phys.38 1113 · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[90] Witten E 1998 Anti De Sitter Space And Holography Adv. Theor. Math. Phys.2 253 · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[91] Gusber S S, Klebanov I R and Polyakov A M 1998 Gauge theory correlators from non-critical string theory Phys. Lett. B 428 105 · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[92] Swingle B 2012 Entanglement renormalization and holography Phys. Rev. D 86 065007 · doi:10.1103/PhysRevD.86.065007
[93] Bény C 2013 Causal structure of the entanglement renormalization ansatz New J. Phys.15 023020 · Zbl 1451.81062 · doi:10.1088/1367-2630/15/2/023020
[94] Bao N, Cao C, Carroll S M and Chatwin-Davies A 2015 Consistency conditions for an AdS/MERA correspondence Phys. Rev. D 91 125036 · doi:10.1103/PhysRevD.91.125036
[95] Pastawski F, Yoshida B, Harlow D and Preskill J 2015 Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence J. High Energy Phys.JHEP6(2015) 149 · Zbl 1388.81094 · doi:10.1007/JHEP06(2015)149
[96] Evenbly G and Vidal G 2011 Tensor network states and geometry J. Stat. Phys.145 891 · Zbl 1231.82021 · doi:10.1007/s10955-011-0237-4
[97] Nozaki M, Ryu S and Takayanagi T 2012 Holographic geometry of entanglement renormalization in quantum field theories J. High Energy Phys.JHEP10(2012) 193 · Zbl 1397.81046 · doi:10.1007/JHEP10(2012)193
[98] Swingle B 2012 Constructing holographic spacetimes using entanglement renormalization arXiv:1209.3304
[99] Hartman T and Maldacena J 2013 Time evolution of entanglement entropy from black hole interiors J. High Energy Phys.JHEP5(2013) 014 · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[100] Miyaji M, Ryu S, Takayanagi T and Wen X 2015 Boundary states as holographic duals of trivial spacetimes J. High Energ. Phys.JHEP05(2015) 152 · Zbl 1388.83305 · doi:10.1007/jhep05(2015)152
[101] Miyaji M and Takayanagi T 2015 Surface/state correspondence as a generalized holography Prog. Theor. Exp. Phys.2015 073B03 · Zbl 1348.81458 · doi:10.1093/ptep/ptv089
[102] Miyaji M, Numasawa T, Shiba N, Takayanagi T and Watanabe K 2015 cMERA as surface/state correspondence in AdS/CFT Phys. Rev. Lett.115 171602 · doi:10.1103/PhysRevLett.115.171602
[103] Gan W-C, Shu F-W and Wu M-H 2015 Thermal geometry from CFT at finite temperature Phys. Lett. B 750 796
[104] Evenbly G and White S R 2016 Entanglement renormalization and wavelets Phys. Rev. Lett.116 140403 · doi:10.1103/PhysRevLett.116.140403
[105] Bridgeman J C, O’Brien A, Bartlett S D and Doherty A C 2015 Multiscale entanglement renormalization ansatz for spin chains with continuously varying criticality Phys. Rev. B 91 165129 · doi:10.1103/PhysRevB.91.165129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.