×

Bayesian approach for joint modeling longitudinal data and survival data simultaneously in public health studies. (English) Zbl 07619967

Lio, Yuhlong (ed.) et al., Bayesian inference and computation in reliability and survival analysis. Cham: Springer. Emerg. Top. Stat. Biostat., 343-355 (2022).
Summary: This chapter is aimed to overview the joint modeling through the harmonization of longitudinal data and time-to-event data with a Bayesian approach. We considered a randomized clinical trial in which both longitudinal data and survival data were collected to compare the efficacy and the safety of two antiretroviral drugs in treating patients who had failed or were intolerant of zidovudine (AZT) therapy. Using these data, we demonstrated the advantages of the Bayesian joint modeling over the classical approach of separately analyzing these types of data with Cox proportional hazard model and longitudinal linear mixed-effects model. We found that the Bayesian joint modeling can better address information loss on outcome-dependent missingness, which can preserve information from both longitudinal data and time-to-event data. The Bayesian joint modeling can produce unbiased estimates and retain higher statistical power for public health data analysis.
For the entire collection see [Zbl 1492.62020].

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
62N05 Reliability and life testing

Software:

nlme; lme4; JM; JMbayes; survival
Full Text: DOI

References:

[1] Bates, D., Maechler, M.: lme4: Linear mixed-effects models using S4 classes \(.\) R package (Version 0.999375-34). http://CRAN.R-project.org/package=lme4 (2010)
[2] Brombin, C., Di Serio, C., Rancoita, P.M.: Joint modeling of HIV data in multicenter observational studies: a comparison among different approaches. Stat. Methods Med. Res. 25(6), 2472-2487 (2016). https://doi.org/10.1177/2F0962280214526192 · doi:10.1177/2F0962280214526192
[3] Chen, D.G.: Incorporating historic control information with empirical Bayes. Comput. Stat. Data Anal. 54, 1646-1656 (2010) · Zbl 1284.62076 · doi:10.1016/j.csda.2010.01.023
[4] Chen, D.G., Ho, S.: From statistical power to statistical assurance: it’s time for a paradigm change in clinical trial design. Commun. Stat. Simul. Comput. 46(10), 7957-7971 (2017) · Zbl 1383.62264 · doi:10.1080/03610918.2016.1259476
[5] Chen, D.G., Ting, N., Ho, S.: Informative priors or non-informative priors? A Bayesian re-analysis of binary data from macugen phase III clinical trials. Commun. Stat. Simul. Comput. 46(6), 4535-4546 (2017). https://doi.org/10.1080/03610918.2015.1122049 · Zbl 1377.62202 · doi:10.1080/03610918.2015.1122049
[6] Chen, D.-G., Fraser, M.W.: A Bayesian approach to sample size estimation and the decision to continue program development in intervention research. J. Soc. Soc. Work Res. 8(3), 457-470 (2017). https://doi.org/10.1086/693433 · doi:10.1086/693433
[7] Chen, D.-G., Fraser, M.W., Cuddeback, G.S.: Assurance in intervention research: a Bayesian perspective on statistical power. J. Soc. Soc. Work Res. 9(1), 159-173 (2018). https://doi.org/10.1086/696239 · doi:10.1086/696239
[8] Chen, D., Testa, M.F., Ansong, D., Brevard, K.C.: Evidence building and information accumulation: Bayesian paradigm cohesive for child welfare intervention research. J. Soc. Soc. Work Res. 11(3), 1-16 (2020). https://doi.org/10.1086/711376 · doi:10.1086/711376
[9] Cox, D.R.: Regression models and life-tables. J R Stat Soc Ser B Methodol. 34(2), 187-220 (1972). https://doi.org/10.1111/j.2517-6161.1972.tb00899.x · Zbl 0243.62041 · doi:10.1111/j.2517-6161.1972.tb00899.x
[10] De Gruttola, V., Tu, X.M.: Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics. 50(4), 1003-1014 (1994). https://doi.org/10.2307/2533439 · Zbl 0825.62792 · doi:10.2307/2533439
[11] Faucett, C.L., Thomas, D.C.: Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat. Med. 15(15), 1663-1685 (1996). https://doi.org/10.1002/(SICI)1097-0258(19960815)15:15<3C1663::AID-SIM294>3E3.0.CO;2-1 · doi:10.1002/(SICI)1097-0258(19960815)15:15<3C1663::AID-SIM294>3E3.0.CO;2-1
[12] Goldman, A., Carlin, B., Crane, L., Launer, C., Korvick, J., Deyton, L., Abrams, D.: Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 11, 161-169 (1996) · doi:10.1097/00042560-199602010-00007
[13] Guo, X., Carlin, B.P.: Separate and joint modeling of longitudinal and event time data using standard computer packages. Am. Stat. 58(1), 16-24 (2004). https://doi.org/10.1198/0003130042854 · doi:10.1198/0003130042854
[14] Henderson, R., Diggle, P., Dobson, A.: Joint modelling of longitudinal measurements and event time data. Biostatistics. 1(4), 465-480 (2000). https://doi.org/10.1093/biostatistics/1.4.465 · Zbl 1089.62519 · doi:10.1093/biostatistics/1.4.465
[15] Hsieh, F., Tseng, Y.K., Wang, J.L.: Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics. 62(4), 1037-1043 (2006). https://doi.org/10.1111/j.1541-0420.2006.00570.x · Zbl 1116.62105 · doi:10.1111/j.1541-0420.2006.00570.x
[16] Ibrahim, J.G., Chu, H., Chen, L.M.: Basic concepts and methods for joint models of longitudinal and survival data. J. Clin. Oncol. 28(16), 2796-2801 (2010). https://doi.org/10.1200/JCO.2009.25.0654 · doi:10.1200/JCO.2009.25.0654
[17] Li, S.: Joint modeling of recurrent event processes and intermittently observed time-varying binary covariate processes. Lifetime Data Anal. 22(1), 145-160 (2016). https://doi.org/10.1007/s10985-014-9316-6 · Zbl 1356.62211 · doi:10.1007/s10985-014-9316-6
[18] Pawitan, Y., Self, S.: Modeling disease marker processes in AIDS. J. Am. Stat. Assoc. 88(423), 719-726 (1993). https://doi.org/10.1080/01621459.1993.10476332 · Zbl 0800.62728 · doi:10.1080/01621459.1993.10476332
[19] Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. R.: nlme: linear and nonlinear mixed effects models. R package (Version 3.1-149). http://CRAN.R-project.org/package=nlme (2009)
[20] Rizopoulos, D.: JM: an R package for the joint modeling of longitudinal and time-to-event data. J. Stat. Softw. 35(9), 1-33 (2010). https://doi.org/10.18637/jss.v035.i09 · doi:10.18637/jss.v035.i09
[21] Rizopoulos, D.: Joint models for longitudinal and time-to-event data: With applications in R. Chapman & Hall/CRC Biostatistics Series, Boca Raton (2012) · Zbl 1284.62032 · doi:10.1201/b12208
[22] Rizopoulos, D.: The R Package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. J. Stat. Softw. 72(7), 1-46 (2016). https://doi.org/10.18637/jss.v072.i07 · doi:10.18637/jss.v072.i07
[23] Roustaei, N., Ayatollahi, S.M.T., Zare, N.: A proposed approach for joint modeling of the longitudinal and time-to-event data in heterogeneous populations: An application to HIV/AIDS’s disease. BioMed Research International. 2018 (2018)
[24] Therneau, T., Grambsch, P.: Modeling Survival Data: Extending the Cox Model. Springer, Cham (2000) · Zbl 0958.62094 · doi:10.1007/978-1-4757-3294-8
[25] Therneau, T., Lumley, T.: “Survival”: survival analysis including penalised likelihood. R package (Version 2.35-8). http://CRAN.R-project.org/package=survival (2009)
[26] Wu, L., Liu, W., Yi, G.Y., Huang, Y.: Analysis of longitudinal and survival data: joint modeling, inference methods, and issues. J. Probab. Stat. 2012(640153), 1-17 (2012). https://doi.org/10.1155/2012/640153 · Zbl 1233.62176 · doi:10.1155/2012/640153
[27] Wulfsohn, M.S., Tsiatis, A.A.: A joint model for survival and longitudinal data measured with error. Biometrics. 53(1), 330-339 (1997). https://doi.org/10.2307/2533118 · Zbl 0874.62140 · doi:10.2307/2533118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.