×

Sampling method based projection approach for the reconstruction of 3D acoustically penetrable scatterers. (English) Zbl 1333.65124

Summary: We present a projection based regularization parameter choice approach within the framework of the linear sampling method for the reconstruction of acoustically penetrable objects. Using the Golub-Kahan bidiagonalization algorithm and the Lanczos tridiagonalization process we form appropriate subspaces which generate a sequence of regularized solutions. As a result two new and efficient methods are developed and used for the solution of problems that involve large systems of linear equations. The effectiveness of our approach is illustrated with reconstructions of three dimensional objects.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35R30 Inverse problems for PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N38 Boundary element methods for boundary value problems involving PDEs
65F22 Ill-posedness and regularization problems in numerical linear algebra
Full Text: DOI

References:

[1] Anagnostopoulos, K.; Charalambopoulos, A.; Kleefeld, A., The factorization method for the acoustic transmission problem, Inverse Probl., 29, 1-29 (2013) · Zbl 1293.65144
[2] Bazán, F. S.V., Fixed-point iterations in determining the Tikhonov regularization parameter, Inverse Probl., 24, 1-15 (2008) · Zbl 1147.65033
[3] Bazán, F. S.V., Simple and efficient determination of the Tikhonov regularization parameter chosen by the generalized discrepancy principle for discrete-ill-posed problems, J. Sci. Comput., 63, 163-184 (2015) · Zbl 1323.65038
[4] Bazán, F. S.V.; Borges, L. S., GKB-FP: an algorithm for large-scale discrete ill-posed problems, BIT, 50, 481-507 (2010) · Zbl 1207.65039
[5] Bazán, F. S.V.; Francisco, J. B.; Leem, K. H.; Pelekanos, G., Using the linear sampling method and an improved maximum product criterion for the solution of the electromagnetic inverse medium problem, J. Comput. Appl. Math., 273, 61-75 (2015) · Zbl 1310.78019
[6] Bazán, F. S.V.; Cunha, M. C.; Borges, L. S., Extension of GKB-FP to large-scale general-form Tikhonov regularization, Numer. Linear Algebra Appl., 21, 316-339 (2014) · Zbl 1340.65071
[7] Bazán, F. S.V.; Francisco, J. B.; Leem, K. H.; Pelekanos, G., A maximum product criterion as a Tikhonov parameter choice rule for Kirsch’s factorization method, J. Comput. Appl. Math., 236, 4264-4275 (2012) · Zbl 1253.65178
[8] Björck, Å., A bidiagonalization algorithm for solving ill-posed systems of linear equations, BIT, 28, 659-670 (1988) · Zbl 0658.65041
[9] Colton, D.; Haddar, H.; Monk, P., The linear sampling method for solving the electromagnetic inverse scattering problem, SIAM J. Sci. Comput., 24, 719-731 (2003) · Zbl 1037.78008
[10] Colton, D.; Haddar, H.; Piana, M., The linear sampling method in inverse electromagnetic scattering theory, Inverse Probl., 19, 105-137 (2003) · Zbl 1049.78010
[11] Colton, D.; Kirsch, A., A simple method for solving the inverse scattering problems in the resonance region, Inverse Probl., 12, 383-393 (1996) · Zbl 0859.35133
[12] Colton, D.; Piana, M.; Potthast, R., A simple method using Morozov’s discrepancy principle for solving inverse scattering problems, Inverse Probl., 13, 1477-1493 (1999) · Zbl 0902.35123
[13] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory (1983), Wiley-Interscience: Wiley-Interscience New York · Zbl 0522.35001
[14] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1992), Springer Verlag: Springer Verlag New York · Zbl 0760.35053
[15] Costabel, M.; Stephan, E., A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl., 106, 367-413 (1985) · Zbl 0597.35021
[16] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems, Math. Appl., vol. 375 (1996), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht · Zbl 0859.65054
[17] Fares, M.; Gratton, S.; Toint, P., SVD-tail: a new linear-sampling reconstruction method for inverse scattering problems, Inverse Probl., 25, 1-19 (2009) · Zbl 1175.65129
[18] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press: The Johns Hopkins University Press Baltimore, MD · Zbl 0865.65009
[19] Groetsch, C. W., The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind (1984), Pitman: Pitman Boston · Zbl 0545.65034
[20] Haddar, H.; Monk, P., The linear sampling method for solving the electromagnetic inverse medium problem, Inverse Probl., 18, 891-906 (2002) · Zbl 1006.35102
[21] Hansen, P. C., Regularization tools: a Matlab package for analysis and solution of discreet ill-posed problems, Numer. Algorithms, 6, 1-35 (1994) · Zbl 0789.65029
[22] Hansen, P. C., Rank-Deficient and Discrete Ill-Posed Problems (1998), SIAM: SIAM Philadelphia
[23] Higham, N. J., Functions of Matrices: Theory and Computation (2008), SIAM: SIAM Philadelphia · Zbl 1167.15001
[24] Kirsch, A., Characterization of the shape of a scattering obstacle using the spectral data of the far-field operator, Inverse Probl., 14, 1489-1512 (1998) · Zbl 0919.35147
[25] Kirsch, A.; Kress, R., Uniqueness in inverse obstacle scattering, Inverse Probl., 9, 285-299 (1993) · Zbl 0787.35119
[26] Kleinman, R. E.; Martin, P. A., On single integral equations for the transmission problem in acoustics, SIAM J. Appl. Math., 48, 307-325 (1998) · Zbl 0663.76095
[27] Leem, K. H.; Pelekanos, G.; Bazán, F. S.V., Fixed-point iterations in determining a Tikhonov regularization parameter in Kirsch’s factorization method, Appl. Math. Comput., 216, 3747-3753 (2010) · Zbl 1197.78036
[28] Lu, S.; Pereverzev, S. V.; Shao, Y.; Tautenhahn, U., On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales, J. Integral Equations Appl., 22, 483-517 (2010) · Zbl 1206.47015
[29] Paige, C. C.; Saunders, M. A., LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8, 43-71 (1982) · Zbl 0478.65016
[30] Paige, C. C.; Saunders, M. A., LSQR: sparse linear equations and least squares problems, ACM Trans. Math. Software, 8, 195-209 (1982)
[31] Pelekanos, G.; Sevroglou, V., Shape reconstruction of a 2D-elastic penetrable object via the L-curve method, J. Inverse Ill-Posed Probl., 14, 1-16 (2006) · Zbl 1110.35108
[32] Tautenhahn, U., Regularization of linear ill-posed problems with noisy right hand side and noisy operator, J. Inverse Ill-Posed Probl., 16, 507-523 (2008) · Zbl 1153.65054
[33] (Wang, Y.; Yagola, A. G.; Yang, C., Optimization and Regularization for Computational Inverse Problems and Applications (2010), Springer-Verlag: Springer-Verlag Berlin, Heidelberg) · Zbl 1209.65003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.