×

Optimal control problem with nonlinear fractional system constraint applied to image restoration. (English) Zbl 07869434

MSC:

49M41 PDE constrained optimization (numerical aspects)
35Q93 PDEs in connection with control and optimization
35K57 Reaction-diffusion equations
35R11 Fractional partial differential equations
68U10 Computing methodologies for image processing
35R10 Partial functional-differential equations
Full Text: DOI

References:

[1] L.Afraites, A.Hadri, and A.Laghrib, A denoising model adapted for impulse and Gaussian noises using a constrained‐PDE, Inverse Probl.36 (2020), no. 2, 25006. · Zbl 1507.49018
[2] P.Perona and J.Malik, Scale‐space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Machine Intell.12 (1990), no. 7, 629-639.
[3] P.Rodríguez, Total variation regularization algorithms for images corrupted with different noise models: a review, J. Electr. Comput. Eng.2013 (2013), 217021.
[4] L. I.Rudin, S.Osher, and E.Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D. Nonlin. Phenom.60 (1992), no. 1‐4, 259-268. · Zbl 0780.49028
[5] D. N. H.Thanh and S. D.Dvoenko, A denoising of biomedical images, Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci.40 (2015), no. 5, 73.
[6] N. E.Alaa, F.Aqel, and A.Nokrane, Parabolic equation driven by general differential operators with variable exponents and degenerate nonlinearities: application to image restoration, Comput. Appl. Math.42 (2023), no. 5, 233. · Zbl 1524.35126
[7] Y.Meyer, Oscillating patterns in image processing and nonlinear evolution equations university lecture series, Vol. 22, American Mathematical Society, Providence, RI, 2001. · Zbl 0987.35003
[8] S.Osher, A.Solé, and L.Vese, Image decomposition and restoration using total variation minimization and the
[( {H}^{-1} \]\) norm, Multisc. Model. Simul.1 (2003), no. 3, 349-370. · Zbl 1051.49026
[9] L. H.Lieu and L. A.Vese, Image restoration and decomposition via bounded total variation and negative Hilbert‐Sobolev spaces, Appl. Math. Optim.58 (2008), 167-193. · Zbl 1191.68789
[10] L.Afraites, A.Atlas, F.Karami, and D.Meskine, Some class of parabolic systems applied to image processing, Discrete Contin. Dyn. Syst. Ser. B21 (2016), no. 6, 1671-1687. · Zbl 1352.35214
[11] A.Atlas, M.Bendahmane, F.Karami, D.Meskine, and O.Oubbih, A nonlinear fractional reaction‐diffusion system applied to image denoising and decomposition, Discrete Contin. Dyn. Syst. B.26 (2021), no. 9, 4963-4998. · Zbl 1466.94003
[12] Z.Guo, Q.Liu, J.Sun, and B.Wu, Reaction-diffusion systems with
[( p(x) \]\)‐growth for image denoising, Nonlin. Anal. Real World Appl.12 (2011), no. 5, 2904-2918. · Zbl 1219.35340
[13] Z.Guo, J.Yin, and Q.Liu, On a reaction-diffusion system applied to image decomposition and restoration, Math. Comput. Modell.53 (2011), no. 5-6, 1336-1350. · Zbl 1217.65172
[14] J.Attmani, A.Atlas, and F.Karami, Convergence of a finite volume scheme for a parabolic system applied to image processing, Moroccan J. Pure Appl. Anal.8 (2022), no. 3, 401-437. · Zbl 07863555
[15] C.Glusa and E.Otárola, Error estimates for the optimal control of a parabolic fractional PDE, SIAM J. Numer. Anal.59 (2021), no. 2, 1140-1165. · Zbl 1464.49001
[16] M.D’elia, C.Glusa, and E.Otárola, A priori error estimates for the optimal control of the integral fractional Laplacian, SIAM J. Control Optim.57 (2019), no. 4, 2775-2798. · Zbl 1473.35625
[17] E.Otarola, Fractional semilinear optimal control: optimality conditions, convergence, and error analysis, SIAM J. Numer. Anal.60 (2022), no. 1, 1-27. · Zbl 1527.49026
[18] E.Otárola, Error estimates for fractional semilinear optimal control on Lipschitz polytopes, Appl. Math. Optim.88 (2023), no. 2, 40. · Zbl 07708055
[19] F.Bersetche, F.Fuica, E.Otarola, and D.Quero, Bilinear optimal control for the fractional Laplacian: error estimates on Lipschitz domains, 2023. arXiv preprint arXiv:2301.13058.
[20] K.Bredies, D. A.Lorenz, and P.Maass, An optimal control problem in medical image processing, Systems, Control, Modeling and Optimization: Proc. 22nd IFIP TC7 Conf., Springer, Turin, Italy, 2006, pp. 249-259. · Zbl 1214.49028
[21] F.Catté, P.‐L.Lions, J.‐M.Morel, and T.Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal.29 (1992), no. 1, 182-193. · Zbl 0746.65091
[22] E.Di Nezza, G.Palatucci, and E.Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math.136 (2012), no. 5, 521-573. · Zbl 1252.46023
[23] J.Simon, Compact sets in the space
[( {L}^p\left(O,T;B\right) \]\), Ann. Mat. Pura Appl.146 (1986), 65-96. · Zbl 0629.46031
[24] H.Amann, Quasilinear evolution equations and parabolic systems, Trans. Am. Math. Soc.293 (1986), no. 1, 191-227. · Zbl 0635.47056
[25] H.Amann, Quasilinear parabolic systems under nonlinear boundary conditions, Arch. Rat. Mech. Anal.92 (1986), no. 2, 153-192. · Zbl 0596.35061
[26] P.Hartman, Ordinary differential equations, 2nd ed., SIAM, Philadelphia, PA, 2002. · Zbl 1009.34001
[27] A.Chambolle and T.Pock, A first‐order primal‐dual algorithm for convex problems with applications to imaging, J. Math. Imag. Vision40 (2011), 120-145. · Zbl 1255.68217
[28] S.Duo and Y.Zhang, Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications, Comput. Meth. Appl. Mech. Eng.355 (2019), 639-662. · Zbl 1441.65085
[29] K.Bredies, K.Kunisch, and T.Pock, Total generalized variation, SIAM J. Imag. Sci.3 (2010), no. 3, 492-526. · Zbl 1195.49025
[30] E.Zeidler, Nonlinear functional analysis and its applications, Part 1: fixed point theorems, Springer‐Verlag, New York, 1986. · Zbl 0583.47050
[31] H.Attouch, G.Buttazzo, and G.Michaille, Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, SIAM, Philadelphia, 2014. · Zbl 1311.49001
[32] J.‐P.Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris256 (1963), 5042-5044. · Zbl 0195.13002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.