×

A simple bound-preserving sweeping technique for conservative numerical approximations. (English) Zbl 1381.65087

Summary: In this paper, we propose a simple bound-preserving sweeping procedure for conservative numerical approximations. Conservative schemes are of importance in many applications, yet for high order methods, the numerical solutions do not necessarily satisfy maximum principle. This paper constructs a simple sweeping algorithm to enforce the bound of the solutions. It has a very general framework acting as a postprocessing step accommodating many point-based or cell average-based discretizations. The method is proven to preserve the bounds of the numerical solution while conserving a prescribed quantity designated as a weighted average of values from all points. The technique is demonstrated to work well with a spectral method, high order finite difference and finite volume methods for scalar conservation laws and incompressible flows. Extensive numerical tests in 1D and 2D are provided to verify the accuracy of the sweeping procedure.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Cai, X., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume HWENO schemes for compressible Euler equations. J. Sci. Comput. 68(2), 464-483 (2016) · Zbl 1397.76084 · doi:10.1007/s10915-015-0147-8
[2] Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. J. Comput. Phys. 281, 334-351 (2015) · Zbl 1354.65164 · doi:10.1016/j.jcp.2014.10.029
[3] Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825-A1845 (2015) · Zbl 1329.76225 · doi:10.1137/140971208
[4] Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644-668 (1997) · Zbl 0885.42003 · doi:10.1137/S0036144596301390
[5] Hewitt, E., Hewitt, R.E.: The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21(2), 129-160 (1979) · Zbl 0424.42002 · doi:10.1007/BF00330404
[6] Hu, X., Adams, N., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169-180 (2013) · Zbl 1311.76088 · doi:10.1016/j.jcp.2013.01.024
[7] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[8] Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58(1), 41-60 (2014) · Zbl 1286.65102 · doi:10.1007/s10915-013-9724-x
[9] Pareschi, L., Russo, G.: On the stability of spectral methods for the homogeneous Boltzmann equation. Transp. Theory Stat. Phys. 29(3-5), 431-447 (2000) · Zbl 1019.82016 · doi:10.1080/00411450008205883
[10] Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439-471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[11] Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57(1), 19-41 (2013) · Zbl 1282.76134 · doi:10.1007/s10915-013-9695-y
[12] Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476-1493 (2010) · doi:10.1016/j.advwatres.2010.08.005
[13] Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310-331 (2013) · Zbl 1349.76553 · doi:10.1016/j.jcp.2013.06.026
[14] Xiong, T., Qiu, J.-M., Xu, Z.: High order maximum-principle-preserving discontinuous galerkin method for convection-diffusion equations. SIAM J. Sci. Comput. 37(2), A583-A608 (2015) · Zbl 1320.65145 · doi:10.1137/140965326
[15] Xiong, T., Qiu, J.-M., Xu, Z.: Parametrized positivity preserving flux limiters for high order finite difference WENO scheme solving compressible Euler equations. J. Sci. Comput. 67(3), 1066-1088 (2016) · Zbl 1383.76365 · doi:10.1007/s10915-015-0118-0
[16] Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618-639 (2014) · Zbl 1351.76193 · doi:10.1016/j.jcp.2014.05.033
[17] Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83(289), 2213-2238 (2014) · Zbl 1300.65063 · doi:10.1090/S0025-5718-2013-02788-3
[18] Yang, P., Xiong, T., Qiu, J.-M., Xu, Z.: High order maximum principle preserving finite volume method for convection dominated problems. J. Sci. Comput. 67(2), 795-820 (2016) · Zbl 1350.65095 · doi:10.1007/s10915-015-0104-6
[19] Zhang, X., Liu, Y., Shu, C.-W.: Maximum-principle-satisfying high order finite volume weighted essentially nonoscillatory schemes for convection-diffusion equations. SIAM J. Sci. Comput. 34(2), A627-A658 (2012) · Zbl 1252.65146 · doi:10.1137/110839230
[20] Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091-3120 (2010) · Zbl 1187.65096 · doi:10.1016/j.jcp.2009.12.030
[21] Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918-8934 (2010) · Zbl 1282.76128 · doi:10.1016/j.jcp.2010.08.016
[22] Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 467, 2752-2776 (2011) · Zbl 1222.65107 · doi:10.1098/rspa.2011.0153
[23] Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238-1248 (2011) · Zbl 1391.76375 · doi:10.1016/j.jcp.2010.10.036
[24] Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245-2258 (2012) · Zbl 1426.76493 · doi:10.1016/j.jcp.2011.11.020
[25] Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50(1), 29-62 (2012) · Zbl 1247.65131 · doi:10.1007/s10915-011-9472-8
[26] Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes. J. Comput. Phys. 234, 295-316 (2013) · Zbl 1284.65140 · doi:10.1016/j.jcp.2012.09.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.